Induction of Cytochrome P-450 Mediated Mono-Oxygenase Reactions and Conjugation Activities in Freshwater Crayfish (Astacus astacus)

  • P. Lindström-Seppä
  • O. Hänninen
Part of the Archives of Toxicology book series (TOXICOLOGY, volume 9)


The inducibility of the freshwater crayfish (Astacus astacus) bio-transformation enzymes with model inducers (Aroclor 1254, β-Naphthoflavone, Phenobarbital) were investigated three days after intra cephalothoracic injection in the fasting crayfish at 5 °C. Of the monooxygenase activities, 7-ethoxycoumar in 0-deethylase increased in the hepatopancreas significantly (p < 0.05) after ß-naphthoflavone administration. Benzo(a)pyrene hydroxylase did not change. Aroclor 1254 and phenobarbital injection elevated hepatopancreatic glutathione S-transferase activity (p < 0.05).

Key words

Freshwater crayfish (Astacus astacusCytochrome P-450 Biotransformation Induction Aroclor 1254 β-Naphthoflavone Phenobarbital 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahokas JT, Pelkonen O, Kärki NT (1977) Xenobiotic metabolism in fish. Xenobiotica 7: 635–641Google Scholar
  2. Airaksinen M, Valkama EL, Lindqvist OV (1977) Distribution of DDT in the crayfish Astacus astacusL. in acute test. In: Lindqvist OV (ed) Freshwater crayfish 3. Kuopio, Finland, pp 349–356Google Scholar
  3. Andersson T, Koivusaari U (1985) Influence of environmental temperature on the induction of xenobiotic metabolism by β-naphthoflavone in Rainbow trout (Salmo gairdneri). Submitted for publication in Toxicol. Appl PharmacolGoogle Scholar
  4. Brattsten LB, Evans CK, Bonetti S, Zalkow LH (1984) Induction by carrot allelochemicals of insecticide-metabolizing enzymes in the southern armyworm (Spodoptera eridania). Comp Biochem Physiol 77C: 29–37Google Scholar
  5. Elcombe CR, Lech JJ (1979) Induction and characterization of hemoprotein(s) P-450 and monooxygenation in rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol 439: 437–450CrossRefGoogle Scholar
  6. Lindström-Seppä P, Koivusaari U, Hänninen O (1982) Cytochrome P-450 in the hepatopancreas of freshwater crayfish Astacus astacusL. In: Hietanen E, Laitinen M, Hänninen O (eds) Cytochrome P-450, biochemistry, biophysics, and environmental implications. Elsevier Biomedical Press, pp 251–254Google Scholar
  7. Lindström-Seppä P, Koivusaari U, Hänninen O (1983) Metabolism of foreign compounds in freshwater crayfish (Astacus astacusL.) tissues. Aquatic Toxicology 3: 35–46CrossRefGoogle Scholar
  8. Pane JF, Penrose WR (1975) Induction of arylhydrocarbon [benzo(a)pyrene] bydroxylase in fish by petroleum. Bull Environ Contam Toxicol 14: 112–116CrossRefGoogle Scholar
  9. Pickett CB, Telakowski-Hopkins CA, Ding GJ, Argenbright L (1984) Rat liver glutathione S-transferase. Complete nucleotide sequence of a glutathione S-transferase mRNA and the regulation of the Ya, Yb, and Yc mRNAs by 3-methylcholanthrene and phenobarbital. J Biol Chem 259: 5182–5188PubMedGoogle Scholar
  10. Singer SC, March PE, Gonsoulin F, Lee RF (1980) Mixed function oxygenase activity in the blue crab, Callinectes sapidus: Characterization of enzyme activity from stomach tissue. Comp Biochem Physiol 65C: 129–134Google Scholar
  11. Wilkinson CE, Brattsten LB (1972) Microsomal drug metabolizing enzymes in insects. Drug Metab Rev 1: 153–288CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. Lindström-Seppä
    • 1
  • O. Hänninen
    • 1
  1. 1.Department of PhysiologyUniversity of KuopioKuopioFinland

Personalised recommendations