Induction of Cytochrome P-450 Mediated Mono-Oxygenase Reactions and Conjugation Activities in Freshwater Crayfish (Astacus astacus)

  • P. Lindström-Seppä
  • O. Hänninen
Conference paper
Part of the Archives of Toxicology book series (TOXICOLOGY, volume 9)

Abstract

The inducibility of the freshwater crayfish (Astacus astacus) bio-transformation enzymes with model inducers (Aroclor 1254, β-Naphthoflavone, Phenobarbital) were investigated three days after intra cephalothoracic injection in the fasting crayfish at 5 °C. Of the monooxygenase activities, 7-ethoxycoumar in 0-deethylase increased in the hepatopancreas significantly (p < 0.05) after ß-naphthoflavone administration. Benzo(a)pyrene hydroxylase did not change. Aroclor 1254 and phenobarbital injection elevated hepatopancreatic glutathione S-transferase activity (p < 0.05).

Key words

Freshwater crayfish (Astacus astacusCytochrome P-450 Biotransformation Induction Aroclor 1254 β-Naphthoflavone Phenobarbital 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahokas JT, Pelkonen O, Kärki NT (1977) Xenobiotic metabolism in fish. Xenobiotica 7: 635–641Google Scholar
  2. Airaksinen M, Valkama EL, Lindqvist OV (1977) Distribution of DDT in the crayfish Astacus astacusL. in acute test. In: Lindqvist OV (ed) Freshwater crayfish 3. Kuopio, Finland, pp 349–356Google Scholar
  3. Andersson T, Koivusaari U (1985) Influence of environmental temperature on the induction of xenobiotic metabolism by β-naphthoflavone in Rainbow trout (Salmo gairdneri). Submitted for publication in Toxicol. Appl PharmacolGoogle Scholar
  4. Brattsten LB, Evans CK, Bonetti S, Zalkow LH (1984) Induction by carrot allelochemicals of insecticide-metabolizing enzymes in the southern armyworm (Spodoptera eridania). Comp Biochem Physiol 77C: 29–37Google Scholar
  5. Elcombe CR, Lech JJ (1979) Induction and characterization of hemoprotein(s) P-450 and monooxygenation in rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol 439: 437–450CrossRefGoogle Scholar
  6. Lindström-Seppä P, Koivusaari U, Hänninen O (1982) Cytochrome P-450 in the hepatopancreas of freshwater crayfish Astacus astacusL. In: Hietanen E, Laitinen M, Hänninen O (eds) Cytochrome P-450, biochemistry, biophysics, and environmental implications. Elsevier Biomedical Press, pp 251–254Google Scholar
  7. Lindström-Seppä P, Koivusaari U, Hänninen O (1983) Metabolism of foreign compounds in freshwater crayfish (Astacus astacusL.) tissues. Aquatic Toxicology 3: 35–46CrossRefGoogle Scholar
  8. Pane JF, Penrose WR (1975) Induction of arylhydrocarbon [benzo(a)pyrene] bydroxylase in fish by petroleum. Bull Environ Contam Toxicol 14: 112–116CrossRefGoogle Scholar
  9. Pickett CB, Telakowski-Hopkins CA, Ding GJ, Argenbright L (1984) Rat liver glutathione S-transferase. Complete nucleotide sequence of a glutathione S-transferase mRNA and the regulation of the Ya, Yb, and Yc mRNAs by 3-methylcholanthrene and phenobarbital. J Biol Chem 259: 5182–5188PubMedGoogle Scholar
  10. Singer SC, March PE, Gonsoulin F, Lee RF (1980) Mixed function oxygenase activity in the blue crab, Callinectes sapidus: Characterization of enzyme activity from stomach tissue. Comp Biochem Physiol 65C: 129–134Google Scholar
  11. Wilkinson CE, Brattsten LB (1972) Microsomal drug metabolizing enzymes in insects. Drug Metab Rev 1: 153–288CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. Lindström-Seppä
    • 1
  • O. Hänninen
    • 1
  1. 1.Department of PhysiologyUniversity of KuopioKuopioFinland

Personalised recommendations