Type A as a Coping Career — Toward a Conceptual and Methodological Redefinition

  • H. Matschinger
  • J. Siegrist
  • K. Siegrist
  • K. H. Dittmann

Abstract

The conceptualization and measurement of human behavior, which takes into account its variability as well as its interaction with powerful social settings, is an extremely difficult scientific enterprise. In the light of these obstacles, research on Type A behavior pattern (TABP) in its relation to premature manifestation of ischemic heart disease (IHD) must be judged as successful. This holds true despite the fact that new prospective epidemiological studies fail to replicate adequately earlier findings (Shekelle et al. 1983; Ruberman et al. 1984), and despite the fact that the pathophysiology of TABP is still controversial (Dembroski et al. 1983). The focus of shared knowledge created by research on TABP is impressive, and it is evident that certain components or elements in the TABP must be of critical importance for a premature cardiovascular vulnerability to exist. One may argue that the strength of the original concept was in its operational simplicity, as expressed in direct behavioral assessment. On the other hand, theoretical clarification of what is considered “stressful” in TABP has so far been insufficient. At this point, virtually all analyses refer to “enhanced adrenergic activity” or “increased sympathetic arousal” without specifying the different cognitive and emotional concomitants which modulate their neural and neurohumoral consequences. It seems appropriate to re-open the conceptual and methodological discussion on the stressful aspects of TABP. In this framework, we would like to present a condensed version of our work in this field, which has been accumulated over the last 5 years.

Keywords

Cholesterol Fatigue Depression Covariance Angiotensin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen EB (1973) Goodness of fit test for the Rasch model. Psychometrika 38: 123–140CrossRefGoogle Scholar
  2. Appels A (1983) The year before myocardial infarction. In: Dembroski T et al. (eds) Biobehavioral bases of coronary heart disease. Karger, Basel, pp 18–38Google Scholar
  3. Bolm-Audorff U, Siegrist J (1983) Occupational morbidity data in myocardial infarction. J Occup Med 25: 367–371PubMedGoogle Scholar
  4. Dembroski T, Schmidt T, Blümchen G (eds) (1983) Biobehavioral bases of coronary heart disease. Karger, BaselGoogle Scholar
  5. Dittmann K, Matschinger H (1982) Soziale Belastungen, Bewertungsmuster und Streß: Untersu–chungen zur Bedeutung psychosozialer Risiken bei der Entstehung von Herzinfarkt. Research report to the German Research Foundation, MarburgGoogle Scholar
  6. Dittmann K, Matschinger H, Siegrist J (1985) Fragebogen zur Messung von Kontrollambitionen (2nd ed). In: Allmendinger J et al. (eds) ZUMA-Handbuch sozialwissenschaftlicher Skalen. ZUMA, BonnGoogle Scholar
  7. Fischer G (1974) Einführung in die Theorie psychologischer Tests. Huber, BerlinGoogle Scholar
  8. Frankenhaeuser M (1983) The sympathetic-adrenal and pituitary-adrenal response to challenge: a comparison between the sexes. In: Dembroski T et al. (eds) Biobehavioral bases of coronary heart disease. Karger, Basel, pp 91–105Google Scholar
  9. Ganten D, Hermann K, Bayer C, Unger T, Lang RE (1983) Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science 221: 869–871PubMedCrossRefGoogle Scholar
  10. Glass DC (1977) Behavior pattern, stress and coronary disease. Erlbaum, HillsdaleGoogle Scholar
  11. Goldstein JL, Kita T, Brown MS (1983) Defective lipoprotein receptors and atherosclerosis. N Engl J Med 309: 288–296PubMedCrossRefGoogle Scholar
  12. Haynes SG, Feinleib M, Eaker ED (1983) Type–A behavior and the 10 year incidence of coronary heart disease in the Framingham study. In: Rosenman RH (ed) Psychosomatic risk factors and coronary heart disease. Huber, Bern, pp 80–92Google Scholar
  13. Henry JP (1983) Coronary heart disease and arousal of the adrenal cortical axis. In: Dembroski T et al. (eds) Biobehavioral bases of coronary heart disease. Karger, Basel, pp 365–381Google Scholar
  14. Holme I, Helgeland A, Hermann I, Leren P (1982) Socio–economic status as a coronary risk factor: the Oslo study. Acta Med Scand 660: 147–151Google Scholar
  15. Jöreskog KG (1971) Statistical analysis of sets of congeneric tests. Psychometrika 36: 109–133CrossRefGoogle Scholar
  16. Jöreskog KG (1973a) A general method for estimating a linear structural equation system. In: Goldberger AS, Duncan OD (eds) Structural equation models in the social sciences. Seminar, New York, pp 85–112Google Scholar
  17. Jöreskog KG (1973b) Analysis of covariance structures. In: Krishnaia P (ed) Multivariate analysis III. Academic, New York, pp 263–285Google Scholar
  18. Jöreskog KG, Sörbom D (1979) Advances in factor analysis and structural equation models. Abt Books, Cambridge, MassGoogle Scholar
  19. Kaplan JR, Manuck SB, Clarkson TB, Lusso FM, Taub D (1982) Social status, environment and atherosclerosis in Cynomolgus monkeys. Arteriosclerosis 2: 359–368PubMedCrossRefGoogle Scholar
  20. Karasek R, Russell S, Theorell T (1982) Physiology of stress and regeneration in job related cardiovascular illness. J Hum Stress 8: 29–42CrossRefGoogle Scholar
  21. Lown B, Verrier RL, Rabinowitz SH (1977) Neural and psychological mechanisms and the problem of sudden cardiac death. Am J Cardiol 39: 890–902PubMedCrossRefGoogle Scholar
  22. Marmot MG, Rose G, Shipley M, Hamilton PJS (1978) Employment grade and coronary heart disease in British civil servants. J Epidemiol Community Health 32: 244–249PubMedCrossRefGoogle Scholar
  23. Partinen M, Putkonen PTS, Kaprio J, Koskenvuo M, Hilakivi I (1982) Sleep disorders in relation to coronary heart disease. Acta Med Scand 660: 69–83Google Scholar
  24. Rasch G (1960) Probabilistic models for some intelligence and attainment tests. Nielsen and Lydiche, CopenhagenGoogle Scholar
  25. Rosenman RH (ed) (1983) Psychosomatic risk factors and coronary heart disease. Huber, BernGoogle Scholar
  26. Rost J (1977) Diagnostik des Lernzuwachses-ein Beitrag zur Theorie und Methodik von Lerntests. I PN-Arbeitsbericht 26, KielGoogle Scholar
  27. Ruberman W, Weinblatt E, Goldberg JD, Chandhary BS (1984) Psychosocial influences on mortality after myocardial infarction. N Engl J Med 311: 552–559PubMedCrossRefGoogle Scholar
  28. Scheiblechner H (1971) CML-Parameter estimation in a generalized multifactorial version of Rasch’s probabilistic measurement model with two categories of answers. Research Bulletin 4, ViennaGoogle Scholar
  29. Schneiderman N (1983) Behavior, automatic function and animal models of cardiovascular pathology. In: Dembroski T et al. (eds) Biobehavioral bases of coronary heart disease. Karger, Basel, pp 304–364Google Scholar
  30. Shekelle R, Hully S, Neaton J (1983) Type–A behavior and risk of coronary death in MRFIT. Un–published conference report, San DiegoGoogle Scholar
  31. Siegrist J (1984) Threat to social status and cardiovascular risk. Psychother Psychosom 42: 90–96PubMedCrossRefGoogle Scholar
  32. Siegrist J, Dittmann KH, Rittner K, Weber I (1980) Soziale Belastungen und Herzinfarkt. Enke, StuttgartGoogle Scholar
  33. Siegrist J, Dittmann KH, Rittner K, Weber I (1982) The social context of active distress in patients with early myocardial infarction. Soc Sei Med 16: 443–454CrossRefGoogle Scholar
  34. Siegrist J, Matschinger H, Grünewald M (1986) Distress-Karriere und kardiovaskuläres Risiko. In: Klapp B (ed) Psychokardiologie. Springer, Berlin Heidelberg New York (in press)Google Scholar
  35. Siegrist J, Matschinger H, Weber I, Siegrist K, Dittmann KH, Brockmeier R, Klein D (1984b) Der Einfluß sozialer Belastungen und ihrer Verarbeitung auf die Entwicklung kardiovaskulärer Risiken. (unpublished research report to the German Research Foundation, Marburg )Google Scholar
  36. Sörbom D (1974) A general method for studying differences in factor means and factor structures between groups. Br J Math Stat Psychol 27: 229–239CrossRefGoogle Scholar
  37. Sörbom D (1982) Structural equation models with structured means. In: Jöreskog KG, Wold H (eds) Systems under indirect observation, vol I. North-Holland, Amsterdam, pp 183–196Google Scholar
  38. Stieber J, Döring A, Keil U (1982) Häufigkeit, Bekanntheits- und Behandlungsgrad der Hypertonie in einer Großstadtbevölkerung. MMW124: 747–752Google Scholar
  39. Wheaton B, Muthen F, Alwin D, Summers G (1977) Assessing reliability and stability in panel models. In: Heise DR (ed) Sociological methodology. Jossey-Bass, San Francisco, pp 84–136Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • H. Matschinger
  • J. Siegrist
  • K. Siegrist
  • K. H. Dittmann
    • 1
  1. 1.Department of Medical SociologyUniversity of MarburgMarburgFederal Republic of Germany

Personalised recommendations