Skip to main content

How Do Volatile Agents Produce Anesthesia?

  • Conference paper
Isoflurane
  • 71 Accesses

Abstract

Nearly all of the molecular mechnisms of inhalation anesthesia reviewed here will be very general in their applicability. This generality is required because inhalation anesthetics have important effects in muscles, vascula walls, and components of many tissues, and not only the brain and central nervous system. Despite years of effort with techniques such as selective brain lesions, applications of stimulating currents, injections of neurotransmitters, or measurement of local rates of glucose utilization [1, 2], it is still not known in which principal region of structure in the brain anesthesia occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hibbard LS, Hawkins RA (1983) Three-dimensional reconstruction of metabolic data: mapping the action of anesthetics. Anesthesiology 59: A387

    Google Scholar 

  2. Crosby G, Crane AM, Sokoloff L (1984) A comparison of local rates of glucose utilization in spinal cord and brain in conscious and nitrous oxide- or pentobarbital-treated rats. Anesthesiology 61: 434–438

    Article  PubMed  CAS  Google Scholar 

  3. Fink BR (ed) (1980) Molecular mechanisms of anestesia. Raven, New York (Progress in anesthesiology, vol 2 )

    Google Scholar 

  4. Berrige MJ (1985) The molecular basis of communication within the cell. Sci Am 253: 143–152

    Google Scholar 

  5. Bretcher MS (1985) The molecules of the cell membrane. Sci Am 253: 100–108

    Article  Google Scholar 

  6. Eyring H, Woodbury JW, D’Arrigo JS (1973) A molecular mechanism of general anesthesia. Anesthesiology 38: 415–424

    Article  PubMed  CAS  Google Scholar 

  7. Ueda I, Kamaya H (1973) Kinetic and thermodynamic aspects of the mechanism of general anesthesia in a model system of firefly luminescence in vitro. Anesthesiology 38: 425–436

    Article  PubMed  CAS  Google Scholar 

  8. Sachsenheimer W, Pai EF, Schulz GE, Schirmer RH (1977) Halothane binds in the adenine-specific niche of crystalline adenylate kinase. FEBS Lett 79: 310–312

    Article  PubMed  CAS  Google Scholar 

  9. White DC, Wardley-Smith B, Adey G (1975) Anesthetics and bioluminescence. In: Fink BR (ed) Molecular mechanisms of anesthesia. Raven, New York, pp 583–591 (Progress in anesthesia, vol 1 )

    Google Scholar 

  10. Franks NP, Lieb WR (1984) Do general anaesthetics act by competitive binding to specific receptors? Nature 310: 599–601

    Article  PubMed  CAS  Google Scholar 

  11. Bangham AD, Hill MW, Mason WT (1980) In: Fink BR (ed) Molecular mechanism of anesthesia. Raven, New York, pp 69–77 (Progress in anesthesiology, vol 2)

    Google Scholar 

  12. Cullis PR, DeKruijff B (1978) Polymorphic phase behaviour of lipid mixtures as detected by 31P NMR. Evidence that cholesterol may destabilize bilayer structure in membrane systems containing phosphatidylethanolamine. Biochim Biophys Acta 507: 207–218

    Article  PubMed  CAS  Google Scholar 

  13. Ranck JL, Keira T, Luzzati V (1977) A novel packing of the hydrocarbon chains in lipids. The low temperature phases of dipalmitoyl phosphatidyl-glycerol. Biochim Biophys Acta 488: 432–441

    PubMed  CAS  Google Scholar 

  14. Mcintosh TJ, McDaniel RV, Simon SA (1983) Induction of an interdigitated gel phase in fully hydrated phosphatidylcholine bilayers. Biochim Biophys Acta 731: 109–114

    Article  CAS  Google Scholar 

  15. Miller KW, Paton WDM, Smith RA, Smith EB (1973) The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol 9: 131–143

    PubMed  CAS  Google Scholar 

  16. Mori T, Matubayasi N, Ueda I (1984) Membrane expansion and inhalation anesthetics mean excess volume hypothesis. Mol Pharmacol 25: 123–130

    PubMed  CAS  Google Scholar 

  17. Trudell JR, Hubbell WL, Cohen EN (1973) The effect of two inhalation anesthetics on the order of spin-labeled phospholipid vesicles. Biochim Biophys Acta 291: 321–327

    Article  PubMed  CAS  Google Scholar 

  18. Trudell JR (1980) Biophysical concepts in molecular mechanisms of anesthesia. In: Fink BR (ed) Molecular mechanisms of anesthesia. Raven, New York, pp 261–270 (Progress in anesthesia, vol 2 )

    Google Scholar 

  19. Trudell JR (1977) A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology 46: 5–10

    Article  PubMed  CAS  Google Scholar 

  20. Lamb RG, Schwertz DW (1982) The effects of bromobenzene and carbon tetrachloride exposure in vitro on the phospholipase C activity of rat liver cells. Toxicol Appl Pharmacol 63: 216–229

    Article  PubMed  CAS  Google Scholar 

  21. Pellkofer R (1980) Halothane increases membrane fluidity and stimulates sphingomyelin degradation by membrane-bound neutral sphingomyelinase of synaptosomal plasma membranes from calf brain already at clinical concentrations. J Neurochem 34: 988–992

    Article  PubMed  CAS  Google Scholar 

  22. Pauling L (1961) A molecular theory of general anesthesia. Science 134: 15–21

    Article  PubMed  CAS  Google Scholar 

  23. Miller SL (1961) A theory of gaseous anesthetics. Proc Natl Acad Sci USA 47: 1515–1524

    Article  PubMed  CAS  Google Scholar 

  24. Trudell JR, Hubbell WL (1976) Localization of molecular halothane in phospholipid bilayer model nerve membranes. Anesthesiology 44: 202–205

    Article  PubMed  CAS  Google Scholar 

  25. Ueda I, Mashimo T (1982) Anesthetics expand partial molal volume of lipid-free protein dissolved in water: electrostriction hypothesis. Physiol Chem Phys 14: 157–164

    PubMed  CAS  Google Scholar 

  26. Ueda I, Kamaya H (1984) Molecular mechanisms of anesthesia. Anesth Analg 63: 929–945

    Article  PubMed  CAS  Google Scholar 

  27. Baldwin PA, Hubbell WL (in press) Effects of lipid environment on the light-induced conformational changes of rhodopsin: 1. Absence of metarhodopsin II production in dimyristoylphosphatidylcholine recombinant membranes. J Biol Chem

    Google Scholar 

  28. Richards CD, Martin K, Gregory S, Keightley CA, Hesketh TR, Smith GA, Warren GB, Metcalf JC (1978) Degenerate perturbations of protein structure as the mechanism of anaesthetic action. Nature 276: 775–779

    Article  PubMed  CAS  Google Scholar 

  29. Willow M, Catterall WA (1982) Inhibition of binding of [3H]batrachotoxinin A20-benzoate to sodium channels by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol Pharmacol 22: 627–635

    PubMed  CAS  Google Scholar 

  30. Cohn ML, Cohn M (1980) Pentobarbital inhibition of deamination in brain cyclic AMP metabolic pathway. In: Fink BR (ed) Molecular mechanisms of anesthesia. Reven, New York, pp 241–250 (Progress in anesthesia, vol 2 )

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trudell, J.R. (1986). How Do Volatile Agents Produce Anesthesia?. In: Lawin, P., Van Aken, H., Puchstein, C. (eds) Isoflurane. Anaesthesiology Intensive Care Medicine/Anaesthesiologie und Intensivmedizin, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71230-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71230-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16574-3

  • Online ISBN: 978-3-642-71230-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics