The Microbiology of Anaerobic Digestion

  • Sandra M. Stronach
  • Thomasine Rudd
  • John N. Lester
Part of the Biotechnology Monographs book series (BIOTECHNOLOGY, volume 2)

Abstract

The combined and coordinated metabolic activity of an anaerobic reactor population is required for the complete degradation of complex organic matter to CO2 and CH4. The intermediates necessary for certain microorganisms are produced as a consequence of the action of others and therefore consortia of bacteria are frequently involved in these conversions. Despite several analyses of the major non-methanogenic bacteria present in anaerobic digesters, detailed investigations into the generic and specific nature of the hydrolytic and fermentative populations have not generally been reported. The predominant organisms in some waste-treatment systems may not, moreover, participate actively in the process but may merely be components of the wastestream itself; coliforms have been implicated here [1].

Keywords

Cellulose Starch Lactate Propionate Bacillus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Assche PF (1982) Antonie van Leeuwenhoek 48: 520CrossRefGoogle Scholar
  2. 2.
    Bryant MP (1979) J Animal Sci 48: 193Google Scholar
  3. 3.
    Hobson PN (1982) Production of biogas from agricultural wastes. In: Subba Rao NS (ed) Advances in agricultural microbiology. Butterworth Scientific, London, p 523Google Scholar
  4. 4.
    Henze M, Harremoes P (1983) Water Sci Technol 15: 1Google Scholar
  5. 5.
    Hills DJ (1979) Agric Wastes 1: 267CrossRefGoogle Scholar
  6. 6.
    Speece RE, McCarty PL (1964) Nutrient requirements and biological solids accumulation in anaerobic digestion. In: Avances in water pollution research: Proc of the Int Conference, Sept. 1962, London, vol 2. Pergamon Press, Oxford, p 305Google Scholar
  7. 7.
    van den Berg L, Lentz CP (1978) Food processing waste treatment by anaerobic digestion. In: Proc 32nd Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1977. Ann Arbor Science, Ann Arbor, Michigan, p 252Google Scholar
  8. 8.
    Hoban DJ, van den Berg L (1979) J Appi Bacteriol 47: 153CrossRefGoogle Scholar
  9. 9.
    Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Biotechnol Bioeng 22: 699CrossRefGoogle Scholar
  10. 10.
    Murray WD, van den Berg L (1981) Appi Environ Microbiol 42: 502Google Scholar
  11. 11.
    Wijbenga DJ, Meiberg JMB, Brunt K (1984) Wastewater purification in the potato starch industry. In: Houwink EH, van der Meer RR (eds) Progress in industrial microbiology, vol 20: innovations in biotechnology. Elsevier Scientific Publishers, Amsterdam, p 121Google Scholar
  12. 12.
    Mah RA, Sussman C (1968) Appi Microbiol 16: 358Google Scholar
  13. 13.
    Hobson PN, Shaw BG (1974) Water Res 8: 507CrossRefGoogle Scholar
  14. 14.
    Chin M (1983) Appi Environ Microbiol 45: 1271Google Scholar
  15. 15.
    Hobson PN, Shaw BG (1973) Water Res 7: 437CrossRefGoogle Scholar
  16. 16.
    Doelle HW (1981) Basic metabolic processes. In: Rehm H-J, Reed G (eds) Biotechnology: a comprehensive treatise in 8 volumes, 1: microbial fundamentals. Verlag Chemie, Weinheim-Deerfield Beach, Florida Basel, p 113Google Scholar
  17. 17.
    Zeikus JG (1977) Microbial Rev 41: 514Google Scholar
  18. 18.
    Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Microbial Rev 43: 260Google Scholar
  19. 19.
    Scott R (1979) Rennets and Cheese. In: Wiseman A (ed) Topics in enzyme and fermentation, biotechnology 3. Ellis Horwood, Chichester, p 101Google Scholar
  20. 20.
    Toerien DF (1967) Water Res 1: 507Google Scholar
  21. 21.
    Siebert ML, Toerien DF (1969) Water Res 3: 241CrossRefGoogle Scholar
  22. 22.
    Fogarty WM, Kelly CT (1979) Developments in microbial extracellular enzymes. In: Wiseman A (ed) Topics in enzyme and fermentation biotechnology 3. Ellis Horwood, Chichester, p 45Google Scholar
  23. 23.
    Cooney CL, Wang DIC, Wang S-D, Gordon J, Jiminez M (1979) Biotechnol Bioeng Symp 8: 103Google Scholar
  24. 24.
    Lee BH, Blackburn TH (1975) Appi Microbiol 30: 346Google Scholar
  25. 25.
    Khan AW, Trottier TM (1978) Appi Environ Microbiol 35: 1027Google Scholar
  26. 26.
    Kahn AW, Trottier TM, Patel GB, Martin SM (1979) J Gen Microbiol 112: 365Google Scholar
  27. 27.
    Khan AW, Mes-Hartree M (1981) Appi Microbiol 50: 283CrossRefGoogle Scholar
  28. 28.
    Latham MJ, Wolin MJ (1977) Appi Environ Microbiol 34: 297Google Scholar
  29. 29.
    Weimer PJ, Zeikus JG (1977) Appi Environ Microbiol 33: 289Google Scholar
  30. 30.
    Eastman JA, Ferguson JF (1977) J Water Pollut Control Fed 53: 352Google Scholar
  31. 31.
    Gujer W, Zehnder AJB (1983) Water Sci Technol 15: 127Google Scholar
  32. 32.
    Toerien DF, Hattingh WHJ (1969) Water Res 3: 385CrossRefGoogle Scholar
  33. 33.
    Sorensen J, Christiensen D, Jorgensen BB (1981) Appi Environ Microbiol 42: 5Google Scholar
  34. 34.
    Widdell F, Pfennig N (1982) Arch Microbiol 131: 360CrossRefGoogle Scholar
  35. 35.
    Verstraete W, de Baere L, Rozzi A (1981) Trib Cebedeau 34: 367Google Scholar
  36. 36.
    Nagase M, Matsuo T (1982) Biotechnol Bioeng 24: 2227CrossRefGoogle Scholar
  37. 37.
    Bauchop T (1967) J Bacteriol 94: 171Google Scholar
  38. 38.
    Theil PG (1969) Water Res 3: 215CrossRefGoogle Scholar
  39. 39.
    Chung KT (1976) Appi Environ Microbiol 31: 342Google Scholar
  40. 40.
    Ueki A, Minato H, Azuma R, Suto T (1980) J Gen Appi Microbiol 26: 25CrossRefGoogle Scholar
  41. 41.
    Ueki A, Suto T (1981) J Gen Appi Microbiol 27: 229CrossRefGoogle Scholar
  42. 42.
    Toerien DF, Thiel PG, Hattingh WHJ (1968) Water Res 2: 505CrossRefGoogle Scholar
  43. 43.
    Kunkee RE (1974) Adv Chem Ser 137: 151CrossRefGoogle Scholar
  44. 44.
    Mclnerney MJ, Bryant MP, Pfennig N (1979) Arch Microbiol 122: 129CrossRefGoogle Scholar
  45. 45.
    Boon DR, Bryant MP (1980) Appi Environ Microbiol 40: 626Google Scholar
  46. 46.
    Eikmanns R, Jaenchen R, Thauer RK (1983) Arch Microbiol 136: 106CrossRefGoogle Scholar
  47. 47.
    Kaspar HF, Wuhrmann K (1978) Appi Environ Microbiol 36: 1Google Scholar
  48. 48.
    Bryant MP (19748) Methane producing bacteria, part 13 of: Buchanan RE, Gibbons NE, Cowan ST, Holt JG, Liston J, Murray RGE, Niven CF, Ravin AW, Stanier RY (eds) Bergey’s manual of determinitive bacteriology. Williams and Wilkins, Baltimore, p 472Google Scholar
  49. 49.
    Hungate RE (1950) Bacteriol Rev 14: 1Google Scholar
  50. 50.
    Hungate RE (1969) A roll-tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3 B. Academic Press, New York, p 117Google Scholar
  51. 51.
    Latham MJ, Wolin MJ (1978) Use of a serum bottle technique to study interactions between strict anaerobes in mixed cultures. In: Lovelock DW, Davis R (eds) Techniques for the study of mixed populations. Academic Press, London, p 113Google Scholar
  52. 52.
    Mink RW, Dugan PR (1977) Appi Environ Microbiol 27: 985Google Scholar
  53. 53.
    Doddema HJ, Vogels GD (1978) Appi Environ Microbiol 36: 752Google Scholar
  54. 54.
    Delafontaine MJ, Naveau HP, Nyns EJ (1979) Biotechnol Lett 1: 71CrossRefGoogle Scholar
  55. 55.
    Binot RA, Naveau HP, Nyns EJ (1981) Biotechnol Lett 3: 632CrossRefGoogle Scholar
  56. 56.
    Nelson DR, Zeikus JG (1974) Appi Microbiol 28: 258Google Scholar
  57. 57.
    Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) J Bacteriol 132: 118Google Scholar
  58. 58.
    Hobson PN, McDonald I (1980) J Chem Technol Biotechnol 30: 405CrossRefGoogle Scholar
  59. 59.
    Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG (1979) Water Res 13: 571CrossRefGoogle Scholar
  60. 60.
    Bochem HP, Schoberth SM, Sprey B, Wengher P (1982) Can J Microbiol 28: 500CrossRefGoogle Scholar
  61. 61.
    Stetter KO, Thomm M, Winter G, Wildgruber G, Huber H, Zillig W, Janekovic D, Konig H, Palm P, Wunderl S (1981) Z Bakt Parasit Infekt Hyg 1: 166Google Scholar
  62. 62.
    Rivard CJ, Smith PH (1982) Int J Syst Bacteriol 32: 430CrossRefGoogle Scholar
  63. 63.
    Zeikus JG (1979) Microbial populations in digesters. In: Proc 1st Int Symp on Anaerobic Digestion, Sept 1979 Cardiff UK. Applied Science Publications Ltd, London, p 61Google Scholar
  64. 64.
    Bryant MP, Campbell LC, Reddy C, Crabill M (1972) Appi Environ Microbiol 33: 1162Google Scholar
  65. 65.
    Widdell W, Pfennig N (1977) Arch Microbiol 112: 119CrossRefGoogle Scholar
  66. 66.
    Badziog W, Thauer R, Zeikus JG (1978) Arch Microbiol 116: 41CrossRefGoogle Scholar
  67. 67.
    Pfennig N, Bieble H (1976) Arch Microbiol 110: 3CrossRefGoogle Scholar
  68. 68.
    Zeikus JG (1979) Enzyme Microb Technol 1: 243CrossRefGoogle Scholar
  69. 69.
    Schink B, Zeikus JG (1983) J Gen Microbiol 129: 1149Google Scholar
  70. 70.
    Ohwaki K, Hungate RE (1977) Appi Environ Microbiol 33: 1270Google Scholar
  71. 71.
    Genther BRS, Davis CL, Bryant MP (1981) Appi Environ Microbiol 42: 12Google Scholar
  72. 72.
    Goldberg I, Cooney CL (1981) Appi Environ Microbiol 41: 148Google Scholar
  73. 73.
    Patel GB, Roth LA, Agnew BJ (1984) Can J Microbiol 30: 228CrossRefGoogle Scholar
  74. 74.
    Bhatnagar L, Henriquet M, Longin R (1983) Biotechnol Lett 5: 39CrossRefGoogle Scholar
  75. 75.
    Rolfe RD, Hentges DJ, Campbell BJ, Barrett JT (1978) Appi Environ Microbiol 36: 306Google Scholar
  76. 76.
    Cheeseman P, Toms-Wood A, Wolfe RS (1972) J Bacteriol 112: 527Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Sandra M. Stronach
    • 1
  • Thomasine Rudd
    • 1
  • John N. Lester
    • 1
  1. 1.Public Health Engineering Laboratory, Department of Civil EngineeringImperial CollegeLondonUK

Personalised recommendations