Modification of tRNA and Its Applicability for the Assessment of Prognosis, State of Differentiation, and Clonality in Human Leukemias and Lymphomas

  • B. Emmerich
  • G. Meinhardt
  • P. A. Maubach
  • E. Zubrod
  • J. Rastetter
  • W. Kersten
Conference paper
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 30)


The central agents in protein synthesis are tRNA molecules to which amino acids are attached prior to their polymerisation into polypeptides. Besides its role in protein synthesis, tRNA also plays an important role in the regulation of cell metabolism. These regulatory functions involve alterations of tRNA modifications. The modified nucleosides occur at well-defined positions in specific tRNAs (Fig. 1 a).


Chronic Lymphocytic Leukemia Hairy Cell Leukemia Acute Myeloblastic Leukemia tRNA Molecule Solitary Plasmacytoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kasai H, Kuchino Y, Nikei K, Nishimura S (1975) Distribution of the modified nucleoside Q and its derivatives in animal and plant transfer RNAs. Nucleic Acids Res 2: 19311939Google Scholar
  2. 2.
    Nishimura S (1983) Structure, biosynthesis and function of queuosine in transfer RNA. Progr Nucleic Acid Res Mol Biol 28: 49–73CrossRefGoogle Scholar
  3. 3.
    Kersten H (1984) Alteration of tRNA modification in eukaryotes: causes and consequences. Recent Results Cancer Res 84: 255–263Google Scholar
  4. 4.
    Kersten H (1984) On the biological significance of modified nucleosides in tRNA. Progr Nucleic Acid Res Mol Biol 31: 59–114CrossRefGoogle Scholar
  5. 5.
    Meier F, Suter B, Grosjean H, Keith G, Kubli E (1985) Queuosine modification of the wobble base in tRNA1“ influences in vivo decoding properties. EMBO J 4: 823–827PubMedGoogle Scholar
  6. 6.
    Jacobson KB, Farkas WR, Katze JR (1981) Presence of queuine in Drosophila melanogaster: correlation of free pool with queuosine content of tRNA and effect of mutation in pteridine metabolism. Nucleic Acids Res 9: 2351–2366PubMedCrossRefGoogle Scholar
  7. 7.
    Emmerich B, Zubrod E, Weber H, Maubach PA, Kersten H, Kersten W (1985) Relationship of queuine lacking transfer RNA to the grade of malignancy in human leukemias and lymphomas. Cancer Res 45: 4308–4314PubMedGoogle Scholar
  8. 8.
    Okada N, Nishimura S (1979) Isolation and characterisation of a guanine insertion enzyme, a specific tRNA transglycosylase from Escherichia coli. J Biol Chem 254: 3061–3066PubMedGoogle Scholar
  9. 9.
    Binet JL, Catovsky D, Chandra P, et al. (1981) Chronic lymphocytic leukemia: proposals for a revised prognostic staging system. Br J Haematol 8: 365–368CrossRefGoogle Scholar
  10. 10.
    Emmerich B, Pichlmeier R, Ristione R, et al. (1982) Protein synthesis in the blood lymphocytes of chronic lymphocytic leukemia and its relationship to prognosis. Klin Wschr 60: 787793Google Scholar
  11. 11.
    Källander CFR, Simonsson B, Hagberg H, Gronowitz JS (1984) Serum deoxythymidine kinase gives prognostic information in chronic lymphatic leukemia. Cancer 54: 24502455Google Scholar
  12. 12.
    Okada N, Shindo-Okada N, Sato S, Itoh YH, Oka K, Nishimura S (1978) Detection of unique tRNA species in tumor tissues by Escherichia coli guanine insertion enzyme. Proc Natl Acad Sci USA 75: 4247–4251PubMedCrossRefGoogle Scholar
  13. 13.
    Silvestrini R, Piazza R, Riccardi A, Rilke F (1977) Correlation of cell kinetic findings with morphology of non-Hodgkin’s malignant lymphomas. J Natl Cancer Inst 58: 499–504PubMedGoogle Scholar
  14. 14.
    Shindo-Okada N, Terada M, Nishimura S (1981) Change in amount of hypomodified tRNA having guanine in place of queuine during erythroid differentiation of murine erythroleukemia cells. Eur J Biochem 115: 423–428PubMedCrossRefGoogle Scholar
  15. 15.
    Fialkow PI (1976) Clonal origin of human tumors. Biochim Biophys Acta 458: 283–321PubMedGoogle Scholar
  16. 16.
    Waldmann TA, Korsmeyer SJ, Bakhshi A, Arnold A, Kirsch IR (1985) Molecular genetic analysis of human lymphoid neoplasm: immunoglobulin genes and the c-myc oncogene. Ann Intern Med 102: 497–510PubMedGoogle Scholar
  17. 17.
    Kersten H, Schachner E, Dess G, Anders H, Nishimura S, Shindo-Okada N (1983) Queuosine in transfer RNA in relation to differentiation and pteridine metabolism. In: Curtis Ch, Pfleiderer W, Wachter H (eds) Biochemical and clinical aspects of pteridines. Gryter Berlin, pp 367–378Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • B. Emmerich
    • 1
  • G. Meinhardt
    • 1
  • P. A. Maubach
    • 1
  • E. Zubrod
    • 2
  • J. Rastetter
    • 1
  • W. Kersten
  1. 1.Department of Hematology and Oncology, 1st Clinic of Internal MedicineTechnical University of MunichGermany
  2. 2.Institute of Physiologic ChemistryUniversity of ErlangenGermany

Personalised recommendations