Skip to main content

The Endocrine Control of Flight Metabolism in Locusts

  • Conference paper
Insect Flight

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Reserves of respiratory fuels in insect flight muscles are usually only sufficient to meet energy requirements at the initiation of flight, and are too small to sustain prolonged flight activity. The flight muscles must thus take up fuels from the haemolymph. In locusts, the carbohydrate content of the haemolymph is greater than that stored in the tissues, but the opposite is true for the fat reserves (see Goldsworthy 1983). Hormones play an important role in coordinating the supply and utilisation of fuels during sustained flight in locusts, and this will be the major theme of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beenakkers AMT (1969) The influence of corpus cardiacum on lipid metabolism in Locusta migratoria. Gen Comp Endocrinol 13, abstract 12.

    Google Scholar 

  • Broomfield CE, Hardy PM (1977) The synthesis of locust adipokinetic hormone. Tetrahedron Lett 25:2201–2204.

    Article  Google Scholar 

  • Candy DJ (1978) The regulation of locust flight muscle metabolism by octopamine and other compounds. Insect Biochem 8:177–181.

    Article  CAS  Google Scholar 

  • Carlsen J, Herman WS, Christensen M, Josefsson L (1979) Characterization of a second peptide with adipokinetic and red-pigment concentrating activity from the locust corpora cardiaca. Insect Biochem 9:497–501.

    Article  CAS  Google Scholar 

  • Davenport AP, Evans PD (1984a) Stress-induced changes in the octopamine levels of insect haemolymph. Insect Biochem 14:135–143.

    Article  CAS  Google Scholar 

  • Davenport AP, Evans PD (1984b) Changes in haemolymph octopamine levels associated with food deprivation in the locust, Schistocerca americana gregaria. Physiol Entomol 9:269–274.

    Article  CAS  Google Scholar 

  • Evans PD (1978) Octopamine distribution in the insect nervous system. J Neurochem 30:1009–1013.

    Article  CAS  Google Scholar 

  • Evans PD, O’Shea M (1978) The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust. J Exp Biol 73:235–260.

    PubMed  CAS  Google Scholar 

  • Evans PD, Siegler MVS (1982) Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle. J Physiol (Lond) 324:93–112.

    CAS  Google Scholar 

  • Fernlund P, Josefsson L (1972) Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science 177:173–175.

    Article  PubMed  CAS  Google Scholar 

  • Ford WCL, Candy DJ (1972) The regulation of glycolysis in perfused locust flight muscle. Biochem J 130:1101–1112.

    PubMed  CAS  Google Scholar 

  • Gade G (1979) Studies on the influence of synthetic adipokinetic hormone and some analogs on cyclic AMP levels in different arthropod systems. Gen Comp Endocrinol 37:122–130.

    Article  PubMed  CAS  Google Scholar 

  • Gade G (1981) Activation of fat body glycogen phosphorylase in Locusta migratoria by corpus cardiacum extract and synthetic adipokinetic hormone. J Insect Physiol 27:155–161.

    Article  Google Scholar 

  • Gade G, Goldsworthy GJ, Kegel G, Keller R (1984) Single step purification of locust adipokinetic hormones I and II by reversed phase high-performance liquid chromatography, and amino acid composition of the hormone II. Hoppe-Seyler’ss Z Physiol Chem 365:391–398.

    Google Scholar 

  • Gade G, Goldsworthy G, Schaffer MH, Carter Cook J, Rinehart KL Jr (1986) Sequence analysis of adipokinetic hormones II from corpora cardiaca of Schistocerca nitans, Schistocerca gregaria, and Locusta migratoria by fast atom bombardment mass spectrometry. Biochem Biophys Res Commun 134:723–730.

    Article  PubMed  CAS  Google Scholar 

  • Goldsworthy GJ (1983) The endocrine control of flight metabolism in locusts. In: Berridge MJ, Treherne JE, Wigglesworth VB (eds) Advances in insect physiology, vol 17. Academic Press, London, pp 149–204.

    Chapter  Google Scholar 

  • Goldsworthy GJ, Cheeseman P (1978) Comparative aspects of the endocrine control of energy metabolism. In: Gaillard PJ, Boer HH (eds) Comparative endocrinology. Elsevier, Amsterdam, pp 423–436.

    Google Scholar 

  • Goldsworthy GJ, Gäde G (1982) The chemistry of hypertrehalosemic factors. In: Downer RGH, Laufer H (eds) Insect endocrinology. Liss, New York, pp 109–119

    Google Scholar 

  • Goldsworthy GJ, Wheeler CH (1984) Adipokinetic hormones in locusts. In: Hoffman JK, Porchet M (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones. Springer, Berlin Heidelberg New York, pp 126–135.

    Google Scholar 

  • Goldsworthy GJ, Mordue W, Guthkelch J (1972) Studies on insect adipokinetic hormones. Gen Comp Endocrinol 18:545–551.

    Article  PubMed  CAS  Google Scholar 

  • Goosey MW (1981) The regulation of insect flight muscle metabolism by octopamine. PhD Thesis, University of Birmingham.

    Google Scholar 

  • Goosey MW, Candy DJ (1980) The D-octopamine content of the haemolymph of the locust Schistocerca americana gregaria and its elevation during flight. Insect Biochem 10:393–397.

    Article  CAS  Google Scholar 

  • Goosey MW, Candy DJ (1982a) The release and removal of octopamine by tissues of the locust Schistocerca americana gregaria. Insect Biochem 12:681–685.

    Article  CAS  Google Scholar 

  • Goosey MW, Candy DJ (1982b) The regulation of substrate oxidation in locust flight muscle by a factor from the corpus cardiacum. Biochem Soc Trans 10:276.

    CAS  Google Scholar 

  • Lok CM, Van der Horst DJ (1980) Chiral 1, 2-diacylglycerols in the haemolymph of the locust, Locusta migratoria. Biochim Biophys Acta 618:80–87.

    PubMed  CAS  Google Scholar 

  • Mayer RJ, Candy DJ (1969) Control of haemolymph lipid concentration during locust flight: an adipokinetic hormone from the corpora cardiaca. J Insect Physiol 15:611–620.

    Article  CAS  Google Scholar 

  • Mwangi RW, Goldsworthy GJ (1977) Diglyceride-transporting lipoproteins in Locusta. J Comp Physiol B Metab Transp Funct 114:177–190.

    CAS  Google Scholar 

  • Mwangi RW, Goldsworthy GJ (1981) Diacylglycerol-transporting lipoproteins and flight in Locusta. J Insect Physiol 27:47–50.

    Article  CAS  Google Scholar 

  • Orchard I, Lange AB (1983a) Release of identified adipokinetic hormones during flight and following neural stimulation in Locusta migratoria. J Insect Physiol 29:425–429.

    Article  CAS  Google Scholar 

  • Orchard I, Lange AB (1983b) The hormonal control of haemolymph lipid during flight in Locusta migratoria. J Insect Physiol 29:639–642.

    Article  CAS  Google Scholar 

  • Orchard I, Loughton BG (1980) A hypolipaemic factor from the corpus cardiacum of locusts. Nature 286:494–496.

    Article  CAS  Google Scholar 

  • Orchard I, Loughton BG (1981) Is octopamine a transmitter mediating hormone release in insects? J Neurobiol 12:143–153.

    Article  PubMed  CAS  Google Scholar 

  • Orchard I, Loughton BG, Webb RA (1981) Octopamine and short-term hyperlipaemia in the locust. Gen Comp Endocrinol 45:175–180.

    Article  PubMed  CAS  Google Scholar 

  • Orchard I, Carlisle JA, Loughton BG, Gole JWD, Downer RGH (1982) In vitro studies on the effects of octopamine on locust fat body. Gen Comp Endocrinol 48:7–13.

    Article  PubMed  CAS  Google Scholar 

  • O’Shea M, Evans PD (1979) Potentiation of neuromuscular transmission by an octopaminergic neurone in the locust. J Exp Biol 79:169–190.

    Google Scholar 

  • Pines M, Tietz A, Weintraub H, Applebaum SW, Josefsson L (1981) Hormonal activation of protein kinase and lipid mobilisation in the locust fat body in vitro. Gen Comp Endocrinol 43:427–431.

    Article  PubMed  CAS  Google Scholar 

  • Rademakers LHPM (1977) Identification of a secretomotor centre in the brain of Locusta migratoria, controlling the secretory activity of the adipokinetic hormone producing cells of the corpus cardiacum. Cell Tissue Res 184:381–395.

    PubMed  CAS  Google Scholar 

  • Rademakers LHPM, Beenakkers AMT (1977) Changes in the secretory activity of the glandular lobe of the corpus cardiacum of Locusta migratoria induced by flight. A quantitative electron microscope study. Cell Tissue 180:155–171.

    CAS  Google Scholar 

  • Robinson NL, Goldsworthy GJ (1977) Adipokinetic hormone and the regulation of carbohydrate and lipid metabolism in a working flight muscle preparation. J Insect Physiol 23:9–16.

    Article  PubMed  CAS  Google Scholar 

  • Siegert K, Morgan P, Mordue W (1985) Primary structures of locust adipokinetic hormones II. Biol Chem Hoppe-Seyler 366:723–727.

    Article  PubMed  CAS  Google Scholar 

  • Spencer IM, Candy DJ (1976) Hormonal control of diacylglycerol mobilization from fat body of the desert locust, Schistocerca gregaria. Insect Biochem 6:289–296.

    Article  CAS  Google Scholar 

  • Stone JV, Mordue W, Batley KE, Morris HR (1976) Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilization during flight. Nature 263:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Storey K (1980) Kinetic properties of purified aldolase from flight muscle of Schistocerca americana gregaria. Role of the enzyme in the transition from carbohydrate to lipid-fuelled flight. Insect Biochem 10:647–655.

    Article  CAS  Google Scholar 

  • Tietz A, Weintraub H (1980) The stereospecific structure of haemolymph and fat body 1,2-diacylglycerol from Locusta migratoria. Insect Biochem 10:61–63.

    Article  CAS  Google Scholar 

  • Tietz A, Weintraub H, Peled Y (1975) Utilization of 2-acyl sn-glycerol by locust fat body microsomes: specificity of the acyltransferase system. Biochim Biophys Acta 388:165–170.

    PubMed  CAS  Google Scholar 

  • Van der Horst DJ, Houben NMD, Beenakkers AMT (1980) Dynamics of energy substrates in the haemolymph of Locusta migratoria during flight. J Insect Physiol 26:441–448.

    Article  Google Scholar 

  • Van Marrewijk WJA, Van Den Broek ATM, Beenakkers AMT (1980) Regulation of glycogenosis in the locust fat body during flight. Insect Biochem 10:675–679.

    Article  Google Scholar 

  • Wheeler CH, Mundy JE, Goldsworthy GJ (1984a) Locust haemolymph lipoproteins visualised in the electron microscope. J Comp Physiol 154:281–286.

    CAS  Google Scholar 

  • Wheeler CH, Van der Horst DJ, Beenakkers AMT (1984b) Lipolytic activity in the flight muscles of Locusta migratoria measured with haemolymph lipoproteins as substrates. Insect Biochem 14:261–266.

    Article  CAS  Google Scholar 

  • Worm RAA (1980) Involvement of cyclic nucleotides in locust flight muscle metabolism. Comp Biochem Physiol 67C:23–27.

    CAS  Google Scholar 

  • Worm RAA, Luytjes W, Beenakkers AMT (1980) Regulatory properties of changes in the contents of coenzyme A. carnitine and their acyl derivatives in flight muscle metabolism of Locusta migratoria. Insect Biochem 10:403–408.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldsworthy, G.J., Wheeler, C.H. (1986). The Endocrine Control of Flight Metabolism in Locusts. In: Danthanarayana, W. (eds) Insect Flight. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71155-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71155-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71157-2

  • Online ISBN: 978-3-642-71155-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics