Skip to main content

Metal Deposition by High-Energy Sputtering for High Magnification Electron Microscopy

  • Chapter

Abstract

Visualization of fine structures of macromolecular dimensions is an important and growing field of modern biological electron microscopy which was until recently exclusively dominated by transmission electron microscopy. However, only specimen domains of subcellular dimensions can be imaged with the transmission electron microscope (TEM) because of instrumental limitations of tilt angles (±60°) and specimen thickness (< 50–100 nm). Specimens compatible with these limitations are replicas of freeze-etched hydrated cells and cell components and deep-etched or dried preparations of isolated molecules. Recent progress made in the development of scanning electron microscopic imaging methods now makes it possible to use also modern scanning electron microscopes (SEM) for high magnification, secondary electron (SE) imaging. Resolution may be increased to dimensions equal to electron beam probe diameters of <1 nm. This improved SEM resolution is similar to that obtained with TEM replicas. The increased SEM tilt capability (±90°) and the high depth of focus, obtained by adjusting the focus while scanning the image (dynamic focusing), enables the SEM to reveal macromolecular fine structures in dried bulk specimens not only of whole single cells but also of complex tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abermann R, Bachmann L (1969) Elektronenmikroskopische Beschattung mit hoher Auflösung. Naturwissenschaften 56:324

    Google Scholar 

  • Abermann R, Saltpeter MM, Bachmann L (1972) High resolution shadowing. In: Hayat MA (ed) Principles and techniques of electron microscopy: biological applications. Van Nostrand Reinhold, New York, vol 2, chapter 5, pp 196–217

    Google Scholar 

  • Adachi K, Hoju K, Katoh M, Kanaya K (1976) High resolution shadowing for electron microscopy by sputter deposition. Ultramicroscopy 2:17–29

    PubMed  CAS  Google Scholar 

  • Ardenne M (1941) Zur Bestimmung des Auflösungsvermögens von Elektronenmikroskopen. Phys Z 42:72–74

    Google Scholar 

  • Bachmann L (1962) Verdampfung durch Elektronenbeschuß zur hochauflösenden Beschattung elektronenmikroskopischer Präparate. Naturwissenschaften 49:34–35

    Google Scholar 

  • Bachmann L, Hayek K (1962 a) Beschattung elektronenmikroskopischer Präparate mit höchstschmelzenden Metallen. Naturwissenschaften 49:153–154

    CAS  Google Scholar 

  • Bachmann L, Hayek K (1962 b) Eine Dekorationsmethode hoher Auflösung zur elektronenmikroskopischen Untersuchung von Kristalloberflächen. Naturwissenschaften 49:154

    CAS  Google Scholar 

  • Bachmann L, Orr WH, Rhodin TN, Siegel BM (1960) Determination of surface structure using ultra-high vacuum replication. J Appl Phys 31:1458–1462

    Google Scholar 

  • Bachmann L, Abermann R, Zingsheim HP (1969) Hochauflösende Gefrierätzung. Histochemie 20:133–142

    PubMed  CAS  Google Scholar 

  • Basset GA (1958) A new technique for decoration of cleavage and slip steps on ionic crystal surfaces. Phil Mag Ser VIII, vol. 3:1042–1045

    Google Scholar 

  • Belous MV, Wayman CM (1967) Temperature changes in thin metal films during vapor deposition. J Appl Phys 38:5119–5124

    Google Scholar 

  • Blaschke R (1980) Three examples of coating artifacts in scanning electron microscopy. Proc R Microsc Soc 15:280–281

    Google Scholar 

  • Bradley DE (1954 a) Evaporated carbon films for use in electron microscopy. Br J Appl Phys 5:65–66

    Google Scholar 

  • Bradley DE (1954 b) An evaporated carbon replica technique for use with the electron microscope and its application to the study of photographic grains. Br J Appl Phys 5:96–97

    CAS  Google Scholar 

  • Bradley DE (1958) Simultaneous evaporation of Pt and carbon for possible use in high-resolution shadow-casting for the electron microscope. Nature 181:875–877

    PubMed  CAS  Google Scholar 

  • Braten T (1978) High resolution scanning electron microscopy in biology: artefacts caused by the nature and mode of application of the coating material. J Microsc 113:53–59

    PubMed  CAS  Google Scholar 

  • Burchard W-G (1973) Eigenschaften von dünnen durch Kathodenzerstäubung hergestellten Goldschichten für die rasterelektronenmikroskopische Präparation. Beitr elektronenmikrosk Direktabb Oberfl 6:231–242

    Google Scholar 

  • Chopra KL (1966) Growth of sputtered vs evaporated metal films. J Appl Phys 37:3405–3410

    CAS  Google Scholar 

  • Chopra KL (1969) Thin film phenomena. McGraw-Hill, New York

    Google Scholar 

  • Chopra KL, Randlett MR (1968) Influence of deposition parameters on the coalescence stage of growth of metal films. J Appl Phys 39:1874–1881

    CAS  Google Scholar 

  • Clay CS, Peace GW (1981) Ion beam sputtering: an improved method of metal coating SEM samples and shadowing CTEM samples. J Microsc 123:25–34

    CAS  Google Scholar 

  • Colquhoun WR (1984) Sputter shadowing. J Ultrastruct Res 87:97–105

    PubMed  CAS  Google Scholar 

  • Colquhoun W, Sokol R, Davison E, Cassimeris L (1985) Shadowing — a computer simulation. J Electr Microsc Tech 2:353–370

    CAS  Google Scholar 

  • Craig S, Harding GL (1981) Effects of argon pressure and substrate temperature on the structure and properties of sputtered copper films. J Vac Sic Technol 19:205–215

    CAS  Google Scholar 

  • Doms RW, Peters K-R (1986) High-energy sputtering of metals with high apparent surface mobilities (in preparation)

    Google Scholar 

  • Echlin P (1972) The rationale and mode of application of thin films to non-conducting materials. Scanning Electron Microsc 1972; 1:137–146

    Google Scholar 

  • Echlin P (1978) Low-temperature biological scanning electron microscopy. In: Koehler JK (ed) Advanced techniques in biological electron microscopy II. Specific ultrastructural probes. Springer, Berlin Heidelberg New York, pp 89–122

    Google Scholar 

  • Echlin P (1981) Recent advances in specimen coating techniques. Scanning Electron Microsc 1980; 1:79–90

    Google Scholar 

  • Echlin P, Kaye G (1979) Thin films for high resolution conventional scanning electron microscopy. Scanning Electron Microsc 1979; 11:21–30

    Google Scholar 

  • Echlin P, Chapman B, Stoter L, Gee W, Burgess A (1982) Low voltage sputter coating. Scanning Electron Microsc 1982:29–38

    Google Scholar 

  • Everhart TE, Wells OC, Oatley CW (1959) Factors affecting contrast and resolution in the scanning electron microscope. J Electron Control 7:97–111

    CAS  Google Scholar 

  • Flood PR (1980) Thin film thickness measurements. Scanning Electron Microsc 1980; 1:183–200

    Google Scholar 

  • Franks J, Clay CS, Peace GW (1980) Ion beam thin film deposition. Scanning Electron Microsc 1980; 1:155–162

    Google Scholar 

  • Geller JD, Yoshioka T, Hurd DA (1979) Coating by ion sputtering deposition for ultrahigh resolution SEM. Scanning Electron Microsc 1979; 11:355–360

    Google Scholar 

  • Glitsch S (1969) Verdampfung von Platin aus Kohletiegeln zur elektronenmikroskopischen Schrägbedampfung. Naturwissenschaften 56:559

    Google Scholar 

  • Grasenick F, Jacopic E, Waltinger H (1972) Metallbeschichtung nichtleitender Materialien zur Rasterelektronenmikroskopie. Naturwissenschaften 59:362

    CAS  Google Scholar 

  • Gross H, Müller T, Wildhaber I, Winkler HP (1983) High resolution metal replication at -269 °C. J Cell Biol 97:308a (abstr)

    Google Scholar 

  • Gross H, Müller T, Wildhaber I, Winkler H, Moor H (1984) Freeze-fracturing and replication at -260°C. In: Bailey GW (ed) 42nd Ann Meet Electron Microsc Soc Am. San Francisco Press, San Francisco: 12–15

    Google Scholar 

  • Haelbich R-P, Segmüller A, Spiller E (1979) Smooth multilayer films suitable for X-ray mirrors. Appl Phys Lett 34:184–186

    CAS  Google Scholar 

  • Hall CE (1950) A low temperature replica method for electron microscopy. J Appl Phys 21:61–62

    CAS  Google Scholar 

  • Hall CE (1955) Electron densitometry of stained virus particles. J Biophys Biochem Cytol 1:1–15

    PubMed  CAS  Google Scholar 

  • Hall CE (1956) Visualization of individual macromolecules with the electron microscope. Proc Natl Acad Sci 42:801–806

    CAS  Google Scholar 

  • Hall CE, Jakus MA, Schmitt FO (1945) The structure of certain muscle fibrils as revealed by the use of electron stains. J Appl Phys 16:459–465

    CAS  Google Scholar 

  • Hayek K, Schwabe U (1969) Zur Wiedergabetreue von Aufdampfabdrucken bei Keimbildungsuntersuchungen an dünnen Metallschichten. Naturwissenschaften 56:457–458

    CAS  Google Scholar 

  • Hayek K, Schwabe U (1971) Application of high-resolution shadow casting to the study of nucleation and growth of gold on sodium chloride. J Vac Sci Technol 9:507–510

    Google Scholar 

  • Hearle JWS, Sparrow JT, Cross PM (1974) The use of the scanning electron microscope. Pergamon, Oxford, 2nd ed: p 79

    Google Scholar 

  • Heinmets F (1949) Modification of silica replica technique for study of biological membranes and application of rotary condensation in electron microscopy. J Appl Phys 20:384–388

    Google Scholar 

  • Helwig G, König H (1950) Die Kathodenzerstäubung, ein Hilfsmittel zur Untersuchung übermikroskopischer Objekte. Optik 7:294–302

    Google Scholar 

  • Hill RM (1966) Nucleation of thin films. Nature 210:512–513

    CAS  Google Scholar 

  • Holland L (1956) Vacuum deposition of thin films. John Wiley, New York

    Google Scholar 

  • Holland VF (1976) Some artifacts associated with sputter-coated samples observed at high magnifications in the scanning electron microscope. Scanning Electron Microsc 1976; 1:71–74

    Google Scholar 

  • Ingram P, Morosoff N, Pope L, Allen F, Tisher C (1976) Some comparisons of the techniques of sputter (coating) and evaporative coating for scanning electron microscopy. Scanning Electron Microsc 1976; 1:75–81

    Google Scholar 

  • Jacopic E, Brunegger A, Essl R, Windisch G (1978) A sputter source for electron microscopic preparation. In: Sturgess JM (ed) Electron Microscopy 1978. Microscopical Society of Canada, Toronto, Ontario M5S 1A1, vol I Physics: 150–151

    Google Scholar 

  • Jaeger H, Mercer PD, Sherwood RG (1969) The effect of exposure to air on silver and gold films deposited in ultra-high vacuum. Surface Sci 13:349–360

    CAS  Google Scholar 

  • Johansen BV, Namork E (1984) Sputtered platinum films on colloidal gold particles: a calibration specimen for quartz film thickness monitors. J Microsc 133:83–87

    CAS  Google Scholar 

  • Kahler H, Lloyd BJ (1952) Electron microscopic study of the shope papilloma virus. J Natl Cancer Inst 12:1167–1175

    PubMed  CAS  Google Scholar 

  • Kanaya K, Hojou K, Adachi K, Toki K (1974) Ion bombardment of suitable targets for atomic shadowing for high resolution electron microscopy. Micron 5:89–119

    CAS  Google Scholar 

  • Kelley RO, Decker RAF, Bluemink JG (1973) Ligand-mediated osmium binding: its application in coating biological specimens for scanning electron microscopy. J Ultrastruct Res 45:254–258

    PubMed  CAS  Google Scholar 

  • Kemmenoe BH, Bullock GR (1983) Structure analysis of sputter-coated and ion-beam sputter-coated films: a comparative study. J Microsc 132:153–163

    PubMed  CAS  Google Scholar 

  • Kern SF, Kern RA (1950) The apparent size of objects as observed in the electron microscope. J Appl Phys 21:705 – 707

    CAS  Google Scholar 

  • Kistler J, Kellenberger E (1977) Collapse phenomena in freeze-drying. J Ultrastruct Res 59:70–75

    PubMed  CAS  Google Scholar 

  • Klug A, Caspar DLD (1960) The structure of small viruses. Adv Virus Res 7:225–325

    PubMed  CAS  Google Scholar 

  • Knoch M, König H (1955) Strukturlose Platinabdrucke biologischer Objekte. Z Wiss Mikrosk 63:121–128

    Google Scholar 

  • König H, Helwig G (1950) Über die Struktur schräg aufgedampfter Schichten und ihr Einfluß auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten. Optik 6:111–124

    Google Scholar 

  • König H, Helwig G (1951) Über dünne aus Kohlenwasserstoffen durch Elektronenoder Ionenbeschuß gebildete Schichten. Z Physik 129:491–503

    Google Scholar 

  • Lewis B, Campbell DS (1967) Nucleation and initial-growth behavior of thin-film deposits. J Vac Sci Technol 4:209–218

    CAS  Google Scholar 

  • Lewis GN, Randall M (1961) Thermodynamics. McGraw-Hill, New York, pp 85, 449

    Google Scholar 

  • Lin PSD (1974) On some testing specimens for high resolution SEM. In: Bailey GW (ed) 32nd Annu Meet Electron Microsc Soc Am. Claitor’s Publ. Div., Baton Rouge, pp 556–557

    Google Scholar 

  • Mahl H (1942) Die übermikroskopische Oberflächendarstellung mit dem Abdruck-verfahren. Naturwissenschaften 30:207–217

    CAS  Google Scholar 

  • Marx KA, Ruben GC (1984) Studies of DNA organization in hydrated spermidine-condensed DNA toruses and spermidine-DNA fibres. J Biomol Struct Dynamics 1:1109–1131

    CAS  Google Scholar 

  • Meurers J (1969) Zufallszahlengeber und scheinbare Sternverteilung. Naturwissenschaften 56:457

    Google Scholar 

  • Moor H (1959) Platin-Kohle-Abdruck-Technik angewandt auf den Feinbau der Milchröhren. J Ultrastruct Res 2:393–422

    Google Scholar 

  • Müller H (1962) Präparation von technisch-physikalischen Objekten für die elektronenmikroskopische Untersuchung. Akad Verlagsges Geest und Porting, Leipzig

    Google Scholar 

  • Müller HO (1942) Die Ausmessung der Tiefe übermikroskopischer Objekte. Kolloid 2 99:6–28

    Google Scholar 

  • Nagatani T, Saito M (1974) Structure analysis of evaporated films by means of TEM and SEM. Scanning Electron Microsc 1974; 1:51–58

    Google Scholar 

  • Neugebauer CA (1970) Condensation, nucleation and growth of thin films. In: Maissel LI, Glang R (eds) Handbook of thin film technology. McGraw-Hill, New York, chapter 8:3–44

    Google Scholar 

  • Nockolds CE, Moran K, Dobson E, Phillips A (1982) Design and operation of a high efficiency magnetron sputter coater. Scanning Electron Microsc 1982: 907–915

    Google Scholar 

  • Ogorelec Z (1958) Einfache graphische Ermittlung der für die Bedampfung elektronenmikroskopischer Präparate notwendigen Größenangaben. Mikroskopie 13:204–206

    PubMed  CAS  Google Scholar 

  • Ottensmeyer FP, Andrew JW (1980) High-resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. J Ultrastruct Res 72:336–348

    PubMed  CAS  Google Scholar 

  • Palade GE (1952) A study of fixation for electron microscopy. J Exp Med 95:285–298

    PubMed  CAS  Google Scholar 

  • Panayi PN, Cheshire DC, Echlin P (1977) A cool sputter system for coating heat-sensitive specimens. Scanning Electron Microsc 1977; I:463–470

    Google Scholar 

  • Pape L, Multani JS, Stitt C, Saltman P (1968) In vitro reconstitution of ferritin. Biochemistry 7:606–612

    PubMed  CAS  Google Scholar 

  • Peters K-R (1977) Stereo surface replicas of cultured cells for high-resolution electron microscopy. J Ultrastruct Res 61:115–123

    PubMed  CAS  Google Scholar 

  • Peters K-R (1979 a) Scanning electron microscopy at macromolecular resolution in low energy mode on biological specimens coated with ultrathin metal films. Scanning Electron Microsc 1979; I:133–148

    Google Scholar 

  • Peters K-R (1979 b) Thickness measurement and use of ultrathin metal films for high resolution transmission and scanning electron microscopy. Beitr. elektronenmi-krosk Direktabb Oberfl 12/1:377–384

    Google Scholar 

  • Peters K-R (1980 a) Improved procedure for high contrast high resolution surface replicas of cell surfaces. Eur J Cell Biol 22:613 (abstr)

    Google Scholar 

  • Peters K-R (1980 b) Penning sputtering of ultrathin films for high resolution electron microscopy. Scanning Electron Microsc 1980; I:143–154

    Google Scholar 

  • Peters K-R (1982 a) Validation of George and Robinson SE-I signal theorem. Implication for ultrahigh resolution SEM on bulk untilted specimens. In: Bailey GW (ed) 40th Annual Meeting Electron Microsc Soc Am. Claitor’s Publ. Div., Baton Rouge, pp 368–369

    Google Scholar 

  • Peters K-R (1982 b) Conditions required for high quality high magnification images in secondary electron-I scanning electron microscopy. Scanning Electron Microsc 1982:1359–1372

    Google Scholar 

  • Peters K-R (1984 a) Generation, collection and properties of an SE-I enriched signal suitable for high resolution SEM on bulk specimens. In: Kyser DF, Niedrig H, Newbury DE, Shimizu R (eds) Electron beam interactions with solids for microscopy, microanalysis and microlithography. Scanning Electron Microsc, AMF O’Hare, pp 363–372

    Google Scholar 

  • Peters K-R (1984 b) Precise and reproducible deposition of thin and ultrathin carbon films by flash evaporation of carbon yarn in high vacuum. J Microsc 133:17–25

    CAS  Google Scholar 

  • Peters K-R (1984 c) Scanning electron microscopy: Contrast at high magnification. In: Romig AD, Goldstein JI (eds) Microbeam analysis — 1984. San Francisco Press, San Francisco: 77–80 *

    Google Scholar 

  • Peters K-R (1984d) Continuous ultrathin metal films. In: Revel JP, Barnard T, Haggis GH, Bhatt SA (eds) The science of biological specimen preparation for microscopy and micronalysis. Scanning Electron Microsc, AMF O’Hare, pp 221–231

    Google Scholar 

  • Peters K-R (1985) Working at higher magnifications in scanning electron microscopy with secondary and backscattered electrons on metal coated biological specimens and imaging macromolecular cell membrane structures. Scanning Electron Microscopy 1985:1519–1544

    Google Scholar 

  • Peters K-R (1986 a) Rationales for the application of thin, continuous metal films in high magnification electron microscopy. J Microsc (in press)

    Google Scholar 

  • Peters K-R (1986 b) Hydrocarbon contaminations in thin metal films. J Microsc (submitted)

    Google Scholar 

  • Peters K-R, Doms RW (1986) High-energy sputtering of metals with low apparent mobilities (in preparation)

    Google Scholar 

  • Peters K-R, Green SA (1983) Macromolecular structures of biological specimens are not obscured by controlled osmium impregnation. In: Bailey GW (ed) 41st Ann Meet Electron Microsc Soc Am. San Francisco Press, San Francisco: 606–607

    Google Scholar 

  • Peters K-R, Milici AJ (1983) High resolution scanning electron microscopy of the luminal surface of a fenestrated endothelium. J Cell Biol 97:336a (abstr)

    Google Scholar 

  • Peters K-R, Milici AJ (1985) Endothelial pockets are new transendothelial structures expressed by individual cells in renal fenestrated peritubular capillaries. J Cell Biol 101:110a (abstr)

    Google Scholar 

  • Peters K-R, Palade GE, Schneider BG, Papermaster DS (1983) Fine structure of a pe-riciliary ridge complex of frog retina rod cells revealed by ultrahigh resolution scanning electron microscopy. J Cell Biol 96:265–276

    PubMed  CAS  Google Scholar 

  • Peters K-R, Carley WW, Palade GE (1984) Plasmalemma vesicles have a characteristic surface structure different from that of coated vesicles. J Cell Biol 99:336a (abstr)

    Google Scholar 

  • Peters K-R, Carley WW, Palade GE (1985) Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J Cell Biol 101:2233–2238

    PubMed  CAS  Google Scholar 

  • Porter KR, Kallman F (1953) The properties and effects of osmium tetroxide as a tissue fixative with special reference to its use for electron microscopy. Exp Cell Res 4:127–141

    CAS  Google Scholar 

  • Porter KR, Claude A, Fullam EF (1945) A study of tissue culture cells by electron microscopy. J Exp Med 81:233–246

    PubMed  CAS  Google Scholar 

  • Preuss LE (1965) Shadow casting and contrast. Lab Invest 14:919–932

    PubMed  CAS  Google Scholar 

  • Reimer L, Pfefferkorn G (1977) Raster-Elektronenmikroskopie. Springer, Berlin Heidelberg New York, 2nd ed: p 101

    Google Scholar 

  • Reimer L, Schulte C (1966) Elektronenmikroskopische Oberflächenabdrücke und ihr Auflösungsvermögen. Naturwissenschaften 53:489–497

    PubMed  CAS  Google Scholar 

  • Rich A, Crick FHC (1961) The molecular structure of collagen. J Mol Biol 3:483–506

    PubMed  CAS  Google Scholar 

  • Robards AW, Willson AJ, Crosby P (1981) Specimen heating during sputter-coating. J Microsc 124:143–153

    PubMed  CAS  Google Scholar 

  • Ruben GC (1981a) The extent of platinum-carbon electron beam gun degasing before replication can change the size and frequency of replicated small particles. In: Bailey GW (ed) 39th Annu Meet Electron Microsc Soc Am. Claitor’s Pub Div Baton Rouge, pp 566–567

    Google Scholar 

  • Ruben GC (1981 b) The shadow widths of very small particles are formed independently of the metal cap build-up on the particle. In: Bailey GW (ed) 39th Annu Meet Electron Microsc Soc Am. Claitor’s Pub Div, Baton Rouge, pp 568–569

    Google Scholar 

  • Ruben GC, Allen RD (1983) Myosin filaments localized in replicated cytoskeletons of freeze-dryed human platelets. In: Bailey GW (ed) 41st Annu Meet Electron Microsc Soc Am. San Francisco Press, San Francisco:530–531

    Google Scholar 

  • Ruben GC, Marx KA (1984 a) Paralax measurements on stereo micrographs of hydrated single molecules, their accuracy and precision at high magnification. J Electr Microsc Tech 1:373–385

    CAS  Google Scholar 

  • Ruben GC, Marx KA (1984 b) Real fibre diameters from freeze-etched Pt-C replicated fibre images: a DNA study. In: Bailey GW (ed) 42nd Annu Meet Electron Microsc Soc Am. San Francisco Press, San Francisco: 684–685

    Google Scholar 

  • Ruben GC, Telford JH (1980) Dimensions of active cytochrome c oxidase in reconstituted liposomes using a gold ball shadow width standard: a freeze-etch electron microscopy study. J Microsc 118:191–216

    PubMed  CAS  Google Scholar 

  • Ruben GC, Allen NS, Travis JL (1981) Structure of freeze-fractured, deep-etched f-ac-tin. In: Bailey GW (ed) 39th Annu Meet Electron Microsc Soc Am. Claitor’s Pub Div Baton Rouge, pp 422–423

    Google Scholar 

  • Sanders JV (1971) Structure of evaporated metal films. In: Anderson JR (ed) Chemi-sorption and reactions on metallic films. Academic, London, vol 1, chapter 1:1–38

    Google Scholar 

  • Shotton DM, Burke BE, Branton D (1979) The molecular structure of human erythrocyte spectrin. J Mol Biol 131:303–329

    PubMed  CAS  Google Scholar 

  • Siegel BM (1964) Modern developments in electron microscopy. Academic, New York, p 76

    Google Scholar 

  • Slayter HS (1976) High resolution metal replication of macromolecules. Ultramicro-scopy 1:341–357

    CAS  Google Scholar 

  • Slayter HS (1978) Electron microscopy of glycoproteins by high resolution metal replication. In: Hayat MA (ed) Principles and techniques of electron microscopy. Biological applications. Van Nostrand Reinhold, New York, vol 9, chapter 6:175–245

    Google Scholar 

  • Slayter HS (1980) High resolution metal coating of biopolymers. Scanning Electron Microsc 1980 1:171–182

    Google Scholar 

  • Slayter HS (1983) Ultrathin metal coated replicas permit high resolution electron microscopy of macromolecules. J Cell Biol 97:478a (abstr)

    Google Scholar 

  • Smith DO, Cohen MS, Weiss GP (1960) Oblique-incidence anisotropy in evaporated permalloy films. J Appl Phys 31:1755–1762

    CAS  Google Scholar 

  • Steere RL, Rash JE (1979) Use of double-tilt device (goniometer) to obtain optimum contrast in feeze-fracture replicas. In: Rash JE, Hudson CS (eds) Freeze fracture: methods, artifacts, and interpretation. Raven, New York, pp 161–167

    Google Scholar 

  • Tesche B (1975) Ein Elektronenstoß-Verdampfer mit geringem Leistungsbedarf für die Herstellung dünner Schichten aus hochschmelzenden Materialien. Vakuum-Technik 24:104–110

    Google Scholar 

  • Thornton JA (1974) Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J Vac Sci Tech 11:666–670

    CAS  Google Scholar 

  • Thornton JA (1977) High rate thick film growth. Ann Rev Mater Sci 7:239–260

    CAS  Google Scholar 

  • Watson ML (1958 a) Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4:475–485

    PubMed  CAS  Google Scholar 

  • Watson ML (1958 b) Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J Biophys Biochem Cytol 4:727–735

    PubMed  CAS  Google Scholar 

  • Williams RC, Backus RC (1949) The electron-microscopic structure of shadow-cast films and surfaces. J Appl Phys 20:98–106

    CAS  Google Scholar 

  • Williams RC, Wyckoff RWG (1944) The thickness of electron microscopic objects. J Appl Phys 15:712–716

    CAS  Google Scholar 

  • Willison JH, Rowe AJ (1980a) Shadowing. In: Replica, shadowing and freeze-etching techniques. From: Glauert AM (ed) Practical methods in electron microscopy. North-Holland, Amsterdam, vol 8, chapter 3:59–93

    Google Scholar 

  • Willison JH, Rowe AJ (1980 b) Resolution and quantitation in replicas and shadowed specimens. In: Replica, shadowing and freeze-etching techniques. From: Glauert AM (ed) Practical methods in electron microscopy. North-Holland, Amsterdam, vol 8, chapter 8:245–282

    Google Scholar 

  • Wohlfarth-Bottermann KE (1957) Die Kontrastierung tierischer Zellen und Gewebe im Rahmen ihrer elektronenmikroskopischen Untersuchung an ultradünnen Schnitten. Naturwissenschaften 44:287–288

    Google Scholar 

  • Zworykin VK, Ramberg EG (1941) Surface studies with the electron microscope. J Appl Phys 12:692–695

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peters, KR. (1986). Metal Deposition by High-Energy Sputtering for High Magnification Electron Microscopy. In: Koehler, J.K. (eds) Advanced Techniques in Biological Electron Microscopy III. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71135-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71135-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16400-5

  • Online ISBN: 978-3-642-71135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics