Skip to main content

The Action of Local Anesthetics on Ion Channels of Excitable Tissues

  • Chapter
Local Anesthetics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 81))

Abstract

Local anesthetics are chemicals that reversibly block action potentials in excitable membranes. The generation and propagation of action potentials depend on the opening and closing of ionic sodium, and usually also of potassium, channels that span excitable nerve and muscle membranes (Hodgkinand Huxley1952; Hille1970). Both the shape of individual action potentials and the frequency of bursts of impulses are determined by the kinetic properties of these ion channels which, in turn, are controlled by the membrane potential of the cell. Local anesthetic molecules interfere with the function of these ion channels in such a way as to block the generation and conduction of action potentials (Taylor1959; Hille1966).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam KR, Schmidt H, Stampfli R, Weiss C (1976) The effect of scorpion venom on single myelinated nerve fibers of the frog. Br J Pharmacol 26:666–677

    Google Scholar 

  • Adams HJ, Blair MR Jr., Takman BH (1976) The local anesthetic activity of tetrodotoxin alone and in combinations with vasoconstrictors and local anesthetics. Anesth Analg 55:568–573

    PubMed  CAS  Google Scholar 

  • Agnew WS, Levinson SR, Brabson JS, Raferty Ma (1978) Purification of the tetrodotoxin binding component associated with the voltage-sensitive sodium channel from Electro-phorus electricus electroplax membranes. Proc Natl Acad Sci USA 75:2606–2610

    PubMed  CAS  Google Scholar 

  • Aldrich RW, Corey DP, Stephens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436–441

    PubMed  CAS  Google Scholar 

  • Almers W, Cahalan MD (1982) Block of sodium channels by internally applied drugs: two receptors for tertiary and quaternary amine compounds? In: Salanki J (ed) Adv Physiol Sci, Pergamon Press

    Google Scholar 

  • Almers W, Levinson SR (1975) Tetrodotoxin binding to normal and depolarized frog muscle and the conductance of a single sodium channel. J Physiol (Lond) 247: 483–509

    CAS  Google Scholar 

  • Arhem P, Frankenhaeuser B (1974) Local anesthetics: effects on permeability properties of nodal membrane in myelinated nerve fibres from Xenopus. Potential clamp experiments. Acta Physiol Scand 91:11–21

    PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol 63:533–552

    PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol 70:567–590

    PubMed  CAS  Google Scholar 

  • Armstrong CM, Croop RS (1982) Simulation of Na channel inactivation by thiazin dyes. J Gen Physiol 80:641–662

    PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F, Rojas E (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62:375–391

    PubMed  CAS  Google Scholar 

  • Barchi RL, Cohen SA, Murphy LE (1980) Purification from rat sarcolemma of the saxi-toxin-binding component of the excitable membrane sodium channel. Proc Natl Acad Sci USA 77:1306–1310

    PubMed  CAS  Google Scholar 

  • Barhanin J, Pauron D, Lombet A, Norman RI, Vijverberg HPM, Giglio JR, Lazdunski, M (1983) Electrophysiological characterization, solubilization and purification of the Tityus γ toxin receptor associated with the gating component of the Na+ channel from rat brain. EMBO J 2:915–920

    PubMed  CAS  Google Scholar 

  • Bean BP, Shrager P, Goldstein DA (1981) Modification of sodium and potassium channel gating kinetics by ether and halothane. J Gen Physiol 77:233–253

    PubMed  CAS  Google Scholar 

  • Bekkers JM, Greeff NG, Keynes RD, Neumcke B (1984) The effect of local anaesthetics on the components of the asymmetry current in the squid giant axon. J Physiol (Lond) 352:653–668

    CAS  Google Scholar 

  • Beneski DA, Catterall WA (1980) Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sci USA 77:639–643

    PubMed  CAS  Google Scholar 

  • Bezanilla R, Armstrong CM (1977) Inactivation of sodium channel: I. Sodium current experiments. J Gen Physiol 70:547–566

    Google Scholar 

  • Bokesch PM, Post C, Strichartz GR (1986) Structure-activity relationship of lidocaine homologues on tonic and frequency-dependent impulse blockade in nerve. J Pharmacol Exp Ther 237:773–781

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Richards CD (1984) Temperature-dependence of the action of nerve blocking agents and its relationship to membrane-buffer partition coefficients: thermodynamic implications for the site of action of local anaesthetics. Br J Pharmacol 81:161–167

    PubMed  CAS  Google Scholar 

  • Buchi J, Perlia X (1971) Structure-activity relations and physicochemical properties of local anesthetics. In: Lajtha A (ed) International Encyclopedia of Pharmacology and Therapeutics 8. Pergamon, London, pp 39–129

    Google Scholar 

  • Cahalan M (1975) Modification of sodium channel gating in frog myelinated nerve fibers by Centruroides sculpturatus scorpion venom. J Physiol (Lond) 244:511–534

    CAS  Google Scholar 

  • Cahalan M (1978) Local anesthetic block of sodium channels in normal and pronase-treated squid giant axons. Biophys J 23:285–311

    PubMed  CAS  Google Scholar 

  • Cahalan MD, Almers W (1979 a) Interactions between quaternary lidocaine, the sodium channel gates and tetrodotoxin. Biophys J 27:39–56

    PubMed  CAS  Google Scholar 

  • Cahalan MD, Almers W (1979 b) Block of sodium conductance and gating current in squid gian axons poisoned with quaternary strychnine. Biophys J 27:57–74

    PubMed  CAS  Google Scholar 

  • Cahalan M, Shapiro BI, Almers W (1980) Relations between inactivation of sodium channels and block by quaternary derivatives of local anesthetics and other compounds. In: Fink BR (ed) Molecular mechanism of anesthesia. Raven, New York, Progress in Anesthesiology, vol 2

    Google Scholar 

  • Catterall WA (1975) Cooperative activation of action potential Na+ ionophore by neurotoxins. Proc Natl Acad Sci USA 72:1782–1786

    PubMed  CAS  Google Scholar 

  • Catterall WA (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Ann Rev Pharmacol Toxicol 20:15–43

    CAS  Google Scholar 

  • Chiu SY, Ritchie JM (1984) On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibers. Proc R Soc Lond (Biol) 220:415–422

    CAS  Google Scholar 

  • Chiu SY, Mrose HE, Ritchie JM (1979) Anomalous temperature dependence of the sodium conductance in rabbit nerve compared with frog nerve. Nature 279:327–328

    PubMed  CAS  Google Scholar 

  • Cohen SA, Barchi RL (1981) Glycoprotein characteristics of the sodium channel saxitoxin-binding component from mammalian sarcolemma. Biochim Biophys Acta 645:253–261

    PubMed  CAS  Google Scholar 

  • Coluhoun D, Henderson R, Ritchie JM (1972) The binding of labelled tetrodotoxin to non-myelinatet nerve fibers. J Physiol (Lond) 227:95–126

    Google Scholar 

  • Courtney KR (1974) Frequency-dependent inhibition of sodium currents in frog myelinated nerve by GEA 968, a new lidocaine derivative. PhD thesis, Dept. of Physiology and Biophysics, University of Washington

    Google Scholar 

  • Courtney KR (1975) Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA-968. J Pharmacol Exp Ther 195:225–236

    PubMed  CAS  Google Scholar 

  • Courtney KR (1980) Structure-activity relations for frequency-dependent sodium channel block in nerve by local anesthetics. J Pharmacol Exp Ther 213:114–119

    PubMed  CAS  Google Scholar 

  • Courtney KR, Etter EF (1983) Modulated anticonvulsant block of sodium channels in nerve and muscle. Eur J Pharmacol 88:1–9

    PubMed  CAS  Google Scholar 

  • Courtney KR, Kendig JJ, Cohen EN (1978) The rates of interaction of local anesthetics with sodium channels in nerve. J Pharmacol Exp Ther 207:594–604

    PubMed  CAS  Google Scholar 

  • Dubois JM, Khodorov BI (1982) Batrachotoxin protects sodium channels from the blocking action of oenanthotoxin. Pflugers Arch 395:55–58

    PubMed  CAS  Google Scholar 

  • Eaton DC, Brodwick MS, Oxford GS, Rudy B (1978) Arginine-specific reagents remove sodium channel inactivation. Nature 271:473–475

    PubMed  CAS  Google Scholar 

  • Ehrenstein G, Huang LYM (1981) Synergism based on binding of drugs to separate but equivalent binding sites. Science 214:1365–1366

    PubMed  CAS  Google Scholar 

  • Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc R Soc Lond (Biol) 127:387–404

    CAS  Google Scholar 

  • Frankenhauser B, Huxley AF (1964) The action potential in the myelinated fibre of Xeno-pus laevis as computed on the basis of voltage clamp data. J Physiol (Lond) 171: 302–325

    Google Scholar 

  • Frazier DT, Narahashi T, Yamada M (1970) The site of action and active form of local anesthetics. II. Experiments with quaternary compounds. J Pharmacol Exp Ther 171:45–51

    PubMed  CAS  Google Scholar 

  • Gilly WF, Armstrong CM (1980) Gating current and potassium channels in the giant axon of the squid. Biophys J 29:485–492

    PubMed  CAS  Google Scholar 

  • Goldman L, Albus JS (1968) Computation of impulse conduction in myelinated fibres; theoretical basis of the velocity-diameter relation. Biophys J 8:596–607

    PubMed  CAS  Google Scholar 

  • Guselnikova G, Peganov E, Khodorov B (1979) Blockage of the gating current in the node of Ranvier by the quaternary lidocaine derivative QX–572. Dok Akad Nauk SSSR 224:1492–1495

    Google Scholar 

  • Hartshome RP, Catterall WA (1981) Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci USA 78:4620–4624

    Google Scholar 

  • Haydon DA, Kimura JE (1981) Some effects of n-pentane on the sodium and potassium currents of the squid giant axon. J Physiol (Lond) 312:57–70

    CAS  Google Scholar 

  • Haydon DA, Urban BW (1983 a) The action of hydrocarbons and carbon tetrachloride on the sodium current of the squid giant axon. J Physiol (Lond) 338:435–450

    CAS  Google Scholar 

  • Haydon DA, Urban BW (1983 b) The action of alcohols and other non-ionic surface active substances on the sodium current of the squid giant axon. J Physiol (Lond) 341: 411–427

    CAS  Google Scholar 

  • Haydong DA, Urban BW (1983 c) The effects of some inhalation anaesthetics on the sodium current of the squid giant axon. J Physiol (Lond) 341:429–439

    Google Scholar 

  • Henderson R, Strichartz G (1974) Ion fluxes through the sodium channels of garfish olfactory nerve membranes. J Physiol (Lond) 238:329–342

    CAS  Google Scholar 

  • Henderson R, Ritchie JM, Strichartz GR (1973) The binding of labelled saxitoxin to the sodium channels in nerve membranes. J Physiol (Lond) 235:783–804

    CAS  Google Scholar 

  • Hille B (1966) The common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature 210:1220–1222

    PubMed  CAS  Google Scholar 

  • Hille B (1968) Pharmacological modifications of the sodium channel of frog nerve. J Gen Physiol 51:199–219

    PubMed  CAS  Google Scholar 

  • Hille B (1970) Ionic channels in nerve membranes. Prog Biophys Mol Biol 21:1–32

    PubMed  CAS  Google Scholar 

  • Hille B (1972) The permeability of the sodium channel to metal cations in myelinated nerve. J Gen Physiol 59:637–658

    PubMed  CAS  Google Scholar 

  • Hille B (1977 a) The pH-dependent rate of action of local anesthetics on the node of Ranvier. J Gen Physiol 69:475–496

    PubMed  CAS  Google Scholar 

  • Hille B (1977 b) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69:497–575

    PubMed  CAS  Google Scholar 

  • Hille B (1978) Local anesthetic action on inactivation of the Na Channel in nerve and skeletal muscle: possible mechanisms for antiarrhythmic agents. In: Morad M (ed) Biophysical aspects of cardiac muscle. Academic, New York

    Google Scholar 

  • Hille B (1980) Theories of anesthesia: general perturbations versus specific receptors. Prog Anesthesiol 2:1–6

    Google Scholar 

  • Hille N, Courtney K, Dum R (1975) Rate and site of action of local anesthetics in myelinated nerve fibers. Prog Anesthesiol 1:13–20

    Google Scholar 

  • Hodgkin AL, Huxley AE (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    CAS  Google Scholar 

  • Horn R, Patlak J, Stevens CF (1981) Sodium channels need not open before they inactivate. Nature 291:426–427

    PubMed  CAS  Google Scholar 

  • Huang L-Y M, Ehrenstein G (1981) Local anesthetics QX572 and benzocaine act at separate sites on the batrachotoxin-activated sodium channel. J Gen Physiol 77:155–176

    Google Scholar 

  • Hutchinson NA, Koles ZJ, Smith RS (1970) Conduction velocity in myelinated nerve fibres of Xenopus laevis. J Physiol (Lond) 208:279–289

    CAS  Google Scholar 

  • Kendig J (1981) Barbiturates: active form and site of action at node of Ranvier sodium channels. J Pharmacol Exp Ther 218:175–181

    PubMed  CAS  Google Scholar 

  • Kendig JJ, Courtney KR, Cohen EN (1979) Anesthetics: molecular correlates of voltage-and frequency-dependent sodium channel block in nerve. J Pharmacol Exp Ther 210:446–452

    PubMed  CAS  Google Scholar 

  • Keynes RD, Rojas (1974) Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol (Lond) 239:393–434

    CAS  Google Scholar 

  • Khodorov BI (1978) Chemicals as tools to study nerve fiber sodium channels: effects of ba-trachotoxin and some local anesthetics. In: Tosteson DC, Ovchinnikov YA, Latorre R (eds) Raven, New York

    Google Scholar 

  • Khodorov B, Shishkova L, Peganov E, Revenko S (1976) Inhibition of sodium currents in frog Ranvier node treated with local anesthetics. Role of slow sodium inactivation. Biochim Biophys Acta 433:409–435

    CAS  Google Scholar 

  • Khodorov B, Goselnikova G, Peganov E (1979) Effect of benzocaine of Na+ and gating currents in the node of Ranvier. Dokl Akad Nauk SSSR 244:1251–1255

    Google Scholar 

  • Krueger BK, Ratzlaff RW, Strichartz GR, Blaustein MP (1979) Saxitoxin binding to synaptosomes, membranes and solubilized binding sites from rat brain. J Membr Biol 50:287–310

    PubMed  CAS  Google Scholar 

  • Krueger BK, Worley JF, French RJ (1983) Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. Nature 303:172–175

    PubMed  CAS  Google Scholar 

  • Lee AG (1976) Model for action of local anesthetics. Nature 262:545–548

    PubMed  CAS  Google Scholar 

  • McLaughlin S (1975) Local anesthetics and the electrical properties of phospholipid bilayer membranes. In: Fink BR (ed) Molecular mechanisms of anesthesia. Raven, New York, pp 193–220

    Google Scholar 

  • Miller JA, Agnew WS, Levinson SR (1983) Principle glycopeptide of the tetrodotoxin/saxi-toxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry 22:462–470

    PubMed  CAS  Google Scholar 

  • Miller KW (1981) General anesthetics. In: Wolf M (ed) Burger’s medicinal chemistry, 4th ed. Wiley, New York, pp 623–644

    Google Scholar 

  • Moczydlowski E, Hall S, Garber SS, Strichartz GR, Miller C (1984) Voltage-dependent blockade of muscle Na+ channels by quanidinium toxins. Effect of toxin charge. J Gen Physiol 84:687–704

    PubMed  CAS  Google Scholar 

  • Mrose HE, Ritchie JM (1978) Local anesthetics: do benozcaine and lidocaine act at the same single site? J Gen Physiol 71:223–225

    PubMed  CAS  Google Scholar 

  • Mullins LJ (1954) Some physical mechanisms in narcosis. Chem Rev 54:289–323

    CAS  Google Scholar 

  • Narahashi T, Haas HG, Therrien EF (1967) Saxitoxin and tetrodotoxin: comparison of nerve blocking mechanism. Science 157:1441–1442

    PubMed  CAS  Google Scholar 

  • Narahashi T, Frazier D, Yamada M (1970) The site of action and active form of local anesthetics. I. Theory and pH experiments with tertiary compounds. J Pharmacol Exp Ther 171:32–44

    PubMed  CAS  Google Scholar 

  • Neuman RS, Frank GB (1977) Effects of diphenylhydantoin and phenobarbital on voltage-clamped myelinated nerve. Can J Physiol Pharmacol 55:42–47

    PubMed  CAS  Google Scholar 

  • Neumcke B, Schwarz W, Stampfli R (1981) Block of Na channels in the membrane of myelinated nerve by benzocaine. Pflugers Arch 390:230–236

    PubMed  CAS  Google Scholar 

  • Nonner W (1980) Relations between the inactivation of sodium channels and the immobilization of gating charge in frog myelinated nerve. J Physiol (Lond) 299:573–603

    CAS  Google Scholar 

  • Nonner W, Spalding BC, Hille B (1980) Low intracellular pH and chemical agents slow inactivation gating in sodium channels of muscle. Nature 284:360–363

    PubMed  CAS  Google Scholar 

  • Oxford GS, Wu CH, Narahashi T (1978) Removal of sodium channel inactivation in squid giant axons by N-bromoacetamide. J Gen Physiol 71:227–247

    PubMed  CAS  Google Scholar 

  • Pichon Y, Schmidtmayer J, Ulbricht W (1981) Mutually exclusive blockage of sodium channels of myelinated frog nerve fibres by benzocaine and the indole alkaloid ervat-amine. Neurosci Lett 22:325–330

    CAS  Google Scholar 

  • Postma SW, Catterall WA (1984) Inhibition of binding of H-Batrachotoxin A 20-α-Ben- zoate to sodium channels by local anesthetics. Mol Pharmacol 25:219–227

    PubMed  CAS  Google Scholar 

  • Revenko SY, Khodorov BI, Shapovalova LM (1982) The effect of yohimbine on sodium and gating currents in frog Ranvier node membrane. Neuroscience 7:1377–1387

    PubMed  CAS  Google Scholar 

  • Rimmel C, Walle A, Kesler H, Ulbricht W (1978) Rates of block by procaine and benzo-caine and the procaine-benzocaine interaction at the node of Ranvier. Pfiugers Arch 376:105–118

    CAS  Google Scholar 

  • Ritchie JM (1975) Mechanism of action of local anesthetic agents and biotoxins. Br J An-aesth 47:191–198

    Google Scholar 

  • Ritchie JM (1978) Sodium channel as a drug receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones. A multidisciplinary approach. Raven, New York, pp 242–277

    Google Scholar 

  • Ritchie JM (1979) A pharmacological approach to the structure of sodium channels in myelinated axons. Annu Rev Neurosci 2:341–362

    PubMed  CAS  Google Scholar 

  • Ritchie JM, Ritchie B (1968) Local anesthetics: effect of pH on activity. Science 162: 1394–1395

    PubMed  CAS  Google Scholar 

  • Ritchie JM, Rogart RB (1977) The binding of saxitoxin and tetrodotoxin to excitable membranes. Rev Physiol Biochem Pharmacol 79:1–50

    PubMed  CAS  Google Scholar 

  • Ritchie JM, Stagg D (1982) A note on the effects of potassium conductance (gk) on conduction velocity in myelinated fibres. J Physiol (Lond) 328:32–33 P

    Google Scholar 

  • Ritchie JM, Ritchie BR, Greengard P (1965) The active structure of local anesthetics. J Pharmacol Exp Ther 150:152–159

    PubMed  CAS  Google Scholar 

  • Rosenberg RL, Tomika, SA, Agnew WS (1984 a) Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricus. Proc Natl Acad Sci USA 81:1239–1243

    PubMed  CAS  Google Scholar 

  • Rosenberg RL, Tomiko SA, Agnew WS (1984) Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of Electrophorus electricus. Proc Natl Acad Sci USA 81:5594–5598

    PubMed  CAS  Google Scholar 

  • Schmidtmayer J, Ulbricht N (1980) Interaction of lidocaine and benzocaine in blocking sodium channels. Pflugers Arch 387:47–54

    PubMed  CAS  Google Scholar 

  • Schwarz W, Palade PT, Hille B (1977) Local anesthetics: effect of pH on use-dependent block of sodium channels in frog muscle. Biophys J 20:343–368

    PubMed  CAS  Google Scholar 

  • Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655

    PubMed  CAS  Google Scholar 

  • Shapiro BI (1977) Effect of strychnine on the sodium conductance of the frog node of Ranvier. J Gen Physiol 69:915–920

    PubMed  CAS  Google Scholar 

  • Shepley MP, Strichartz GR, Wang GK (1983) Local anesthetics block non-inactivating sodium channels in a use-dependent manner in amphibian myelinated axons. J Physiol (Lond) 341:62 P

    Google Scholar 

  • Shrivastav BB, Narahashi T, Kitz RJ, Roberts JD (1976) Mode of action of trichloroeth-ylene on squid axon membranes. J Pharmacol Exp Ther 199:179–188

    PubMed  CAS  Google Scholar 

  • Spalding BC (1980) Properties of toxin-resistant sodium channels produced by chemical modification in frog skeletal muscle. J Physiol (Lond) 305:485–500

    CAS  Google Scholar 

  • Staiman AL, Seeman P (1975) Different sites of membrane action for tetrodotoxin and lipid-soluble anaesthetics. Can J Physiol Pharmacol 53:513–524

    PubMed  CAS  Google Scholar 

  • Stallcup W (1977) Comparative pharmacology of voltage-dependent sodium channels. Brain Res 135:37–53

    PubMed  CAS  Google Scholar 

  • Starmer CF, Grant AO, Strauss H (1984) Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J 46:15–28

    PubMed  CAS  Google Scholar 

  • Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62:37–57

    PubMed  CAS  Google Scholar 

  • Strichartz GR (1975) Inhibition of ionic currents in myelinated nerves by quaternary derivatives of lidocaine. In: Fink BR (ed) Molecular mechanism of anesthesia. Raven, New York, pp 1–11

    Google Scholar 

  • Strichartz GR (1977) The composition and structure of excitable nerve membrane. In: Jamieson GA, Robinson DM (eds) Mammalian cell membranes, vol 3. Butterworths, London, pp 172–205

    Google Scholar 

  • Strichartz GR (1980) Use-dependent conduction block produced by volatile general anesthetic agents. Acta Anesthesiol Scand 24:402–406

    CAS  Google Scholar 

  • Strichartz GR (1981) Pharmacological properties of sodium channels in nerve membranes. In: Waxman SG, Ritchie JM (eds) Demyelinating disease: basic and clinical electrophysiology. Raven, New York

    Google Scholar 

  • Strichartz GR (1985) Interactions of local anesthetics with neuronal sodium channels. In: Covino B, Fozzard HA, Rehder K, Strichartz GR (eds) Effects of anesthesia. Clinical physiology series. American Physiological Society, Bethesda, MD pp 39–52

    Google Scholar 

  • Strichartz G, Wang GK (1986 a) The kinetic basis for phasic local anesthetic blockade of neuronal sodium channels. In: Miller KW, Roth S (eds) Molecular and cellular mechanisms of anesthetics. Plenum Publishing Corp, New York, pp 217–226

    Google Scholar 

  • Strichartz G, Wang GK (1986b) Rapid voltage-dependent dissociation of scorpion α-toxins coupled to Na channel inactivation in amphibian myelinated nerve. J Gen Physiol (in press)

    Google Scholar 

  • Strichartz GR, Chiu SY, Ritchie JM (1978) The effect of Δ 9-tetrahydrocannabinol on the activation of sodium conductance in the node of Ranvier. J Pharmacol Exp Ther 207:801–809

    PubMed  CAS  Google Scholar 

  • Swenson RP, Oxford GS (1980) Modification of sodium channel gating by long chain alcohols: ionic and gating current measurements. Prog Anesthesiol 2:7–16

    CAS  Google Scholar 

  • Taylor RE (1959) Effect of procaine on electrical properties of squid axon membrane. Am J Physiol 196:1071–1078

    PubMed  CAS  Google Scholar 

  • Taylor RE, Bezanilla F (1983) Sodium and gating current time shifts resulting from changes in initial conditions. J Gen Physiol 81:773–784

    PubMed  CAS  Google Scholar 

  • Ueda I, Yasuhara H, Shieh DD, Lin HC, Lin SH, Eyring H (1980) Physical chemistry of the interaction of local anesthetics with model and natural membranes. Prog Anesthesiol 2:285–294

    CAS  Google Scholar 

  • Ulbricht W, Wagner HH (1975) The influence of pH on the rate of tetrodotoxin action on myelinated nerve fibres. J Physiol (Lond) 252:185–202

    CAS  Google Scholar 

  • Wagner HH, Ulbricht W (1976) Saxitoxin and procaine act independently on separate sites of the sodium channel. Pflugers Arch 364:65–70

    PubMed  CAS  Google Scholar 

  • Wang GK (1984) Irreversible modification of sodium channel inactivation in toad myelinated nerve fibres by the oxidant chloramine-T. J Physiol (Lond) 346:127–141

    CAS  Google Scholar 

  • Wang GK (1984 b) Modification of sodium channel inactivation in single myelinated nerve fibres by methionine-reactive chemicals. Biophys J 46:121–124

    PubMed  CAS  Google Scholar 

  • Wang GK, Strichartz GR (1983) Purification and physiological characterization of neurotoxins from venoms of the scorpions Centruroides sculpturatus and Leiurus quinque-striatus. Mol Pharmacol 23:519–533

    PubMed  CAS  Google Scholar 

  • Wang GR, Strichartz GR (1984) Local anesthetics produce phasic block of sodium channels during activation. Biophys J 45:286 a

    Google Scholar 

  • Yeh JZ (1978) Sodium inactivation mechanism modulates QX314 block of sodium channels in squid axons. Biophys J 24:569–574

    PubMed  CAS  Google Scholar 

  • Yeh JZ (1980) Blockage of sodium channels by stereoisomers of local anesthetics. Prog Anesthesiol 2:35–44

    CAS  Google Scholar 

  • Yeh JZ, Armstrong CM (1978) Immobilization of gating charge by a substance that simulates inactivation. Nature 273:387–389

    PubMed  CAS  Google Scholar 

  • Yeh JZ, Narahashi T (1977) Kinetic analysis of pancuronium interaction with sodium channels in squid axon membranes. J Gen Physiol 69, 293–323

    PubMed  CAS  Google Scholar 

  • Zaborovskaya LD, Khodorov BI (1982) Reversible blockage of batrachotoxin-modified sodium channels by amine compounds and benzocaine in frog node of Ranvier. Gen Physiol Biophys 1:283–285

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strichartz, G.R., Ritchie, J.M. (1987). The Action of Local Anesthetics on Ion Channels of Excitable Tissues. In: Strichartz, G.R. (eds) Local Anesthetics. Handbook of Experimental Pharmacology, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71110-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71110-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71112-1

  • Online ISBN: 978-3-642-71110-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics