Skip to main content

Special Features of the Hippocampal Formation with Respect to Seizure Conditions

  • Conference paper
Book cover Presurgical Evaluation of Epileptics
  • 118 Accesses

Abstract

The hippocampus has long been known as a region particularly prone to epileptiform discharges (Kandel et al. 1961). Connections and physiology of this archaic cortical structure are relatively well charac-terized and a wealth of information on features favoring exaggerated neuronal activity has emerged in recent years. The lamellar organization of the hippo-campus (Andersen et al. 1971) may be one of these features; it certainly has facilitated their investigation. Tissue slices cut along the lamellae, perpendicular to the axis of the structure, contain a relatively undisturbed chain of neurons which can be rigorously investigated in vitro. The results from such experiments have allowed modelling and imitation of hippocampal seizures on a computer (Traub et al. 1985). The properties of hippocampal neurons and their connections are discussed here successively for didactic reasons although they overlap functionally. Thus, the hallmark of epileptic activity, the paroxysmal depolarization shift (PDS), could equally well be considered a synaptic (Johnston and Brown 1981) or an intrinsic event (Schwartzkroin and Prince 1980).

This study was supported by the Swiss National Science Foundation (3.002.0.84) and Stiftung für Wissenschaftliche Forschung an der Universität Zürich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PR, Lancaster B (1985) Components of Ca-activated K current in rat hippocampal neurones. J Physiol 361: 23 P

    Google Scholar 

  • Aldenhoff JB, GruolDL, RivierJ, ValeW, SigginsGR (1983) Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons. Science 221: 875–877

    Article  PubMed  CAS  Google Scholar 

  • Alger BE, Nicoll RA (1980) Epileptiform burst afterhyperpo- larization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 210: 1122–1124

    Article  PubMed  CAS  Google Scholar 

  • Alger BE, Nicoll RA (1982 a) Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J Physiol 328:105–123

    PubMed  CAS  Google Scholar 

  • Alger BE, Nicoll RA (1982 b) Pharmacological evidence for two kinds of GAB A receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol 328:125–141

    PubMed  CAS  Google Scholar 

  • Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organiza-tion of hippocampal excitatory pathways. Exp Brain Res 13: 222–238

    Google Scholar 

  • Andersen P, Dingledine R, Gjerstad L, Langmoen IA, Mosfeldt-Laursen A (1980) Two different responses of hippo-campal pyramidal cells to application of gamma-amino butyric acid. J Physiol 305: 279–296

    PubMed  CAS  Google Scholar 

  • Baraban JM, Snyder SH, Alger BE (1985) Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: electrophysiological effects of phorbol esters. Proc Natl Acad Sci USA 82: 2538–2542

    Article  PubMed  CAS  Google Scholar 

  • Bliss T, Lomo T, Gardner-Medwin A (1973) Long-lasting po-tentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–374

    PubMed  CAS  Google Scholar 

  • Brown DA, Griffith WH (1983) Calcium-activated outward current in voltage-clamped hippocampal neurones of the guinea-pig. J Physiol 337: 287–301

    PubMed  CAS  Google Scholar 

  • Buchert-Rau B, Sonnhof U (1982) An analysis of the epileptogenic potency of Co2+ — its ability to induce acute convulsive activity in the isolated frog spinal cord. Pflugers Arch 394: 1–11

    Article  PubMed  CAS  Google Scholar 

  • DichterM, Spencer WA (1969) Penicillin induced interictal discharges from the cat hippocampus: 1. Characteristics and topographical features. J Neurophysiol 32: 649–663

    PubMed  CAS  Google Scholar 

  • DingledineR, GjerstadL (1980) Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J Physiol 305: 297–313

    PubMed  CAS  Google Scholar 

  • Gahwiler BH, Brown DA (1985) GABA B receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc Natl Acad Sci USA 82: 1558–1562

    Article  PubMed  CAS  Google Scholar 

  • Goddard CV, MclntyreDC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25: 295–330

    Article  PubMed  CAS  Google Scholar 

  • Greene RW, Haas HL (1985) Adenosine actions on CA1 pyramidal neurons in rat hippocampal slices. J Physiol 366: 119–127

    PubMed  CAS  Google Scholar 

  • Gustafsson B, Galvan M, Grafe P, Wigstrom H (1982) A transient outward current in a mammalian central neurone blocked by 4-aminopyridine. Nature 299: 252–254

    Article  PubMed  CAS  Google Scholar 

  • Haas HL, Greene RW (1984) Adenosine enhances afterhyper- polarization and accommodation in hippocampal pyramidal cells. Pflugers Arch 402: 244–247

    Article  PubMed  CAS  Google Scholar 

  • Haas HL, JefferysJGR (1984) Low calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J Physiol 354: 185–201

    PubMed  CAS  Google Scholar 

  • Haas HL, Konnerth A (1983) Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 302: 432–434

    Article  PubMed  CAS  Google Scholar 

  • Haas HL, Rose G (1984) The role of inhibitory mechanisms in hippocampal long term potentiation. Neurosci Lett 47: 301–306

    Article  PubMed  CAS  Google Scholar 

  • Haas HL, Jefferys JGR, Slater NT, Carpenter DO (1984) Modulation of low calcium induced field bursts in the hippo-campus by monoamines and cholinomimetics. Pflugers Arch 400: 28–33

    Article  PubMed  CAS  Google Scholar 

  • Haas HL, Greene RW, Olpe H-R (1985) Stereoselectivity of 1-baclofen in hippocampal slices of the rat. Neurosci Lett 55: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Hablitz JJ (1984) Picrotoxin-induced epileptiform activity in hippocampus: role of endogenous versus synaptic factors. J Neurophysiol 51: 1011–1027

    PubMed  CAS  Google Scholar 

  • Halliwell JV (1983) Calcium-loading reveals two distinct Ca- currents in voltage-clamped guinea-pig hippocampal neurons in vitro. J Physiol 341: 10–11

    Google Scholar 

  • Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250: 71–92

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in cerebral cortex of the cat. Exp Brain Res 27: 237–243

    Article  PubMed  CAS  Google Scholar 

  • Hotson JR, Prince DA (1980) A calcium-activated hyperpolar- ization follows repetitive firing in hippocampal neurons. J Neurophysiol 43: 409–419

    PubMed  CAS  Google Scholar 

  • Hotson JR, Prince DA, Schwartzkroin PA (1979) Anomalous inward rectification in hippocampal neurons. J Neurophysiol 42: 889–895

    PubMed  CAS  Google Scholar 

  • Jefferys JGR, Haas HL (1982) Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300: 448–450

    Article  PubMed  CAS  Google Scholar 

  • Johnston D, Brown TH (1981) Giant synaptic potential hypothesis for epileptiform activity. Science 211: 294–297

    Article  PubMed  CAS  Google Scholar 

  • Johnston D, HablitzJJ, Wilson WA (1980) Voltage clamp dis-closes slow inward currents in hippocampal burst firing neurones. Nature 286: 391–393

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Spencer WA, Brinley FJ (1961) Electrophysiology of hippocampal neurons. J Neurophysiol 24: 225–285

    PubMed  CAS  Google Scholar 

  • Leao AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7: 359–390

    Google Scholar 

  • Madison DV, Nicoll RA (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299: 636–638

    Article  PubMed  CAS  Google Scholar 

  • Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro. J Physiol 354: 319–331

    PubMed  CAS  Google Scholar 

  • McVicar BA, Dudek FE (1981) Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science 213: 782–784

    Article  Google Scholar 

  • Meldrum B (1985) Excitatory amino acids and anoxic/ischaemic brain damage. TINS 8: 47–48

    CAS  Google Scholar 

  • Miles R, Wong RKS (1983) Single neurones can initiate synchronized population discharge in the hippocampus. Nature 306: 371–373

    Article  PubMed  CAS  Google Scholar 

  • Newberry NR, Nicoll RA (1984) Direct hyperpolarizing ac-tion of baclofen on hippocampal pyramidal cells. Nature 308: 450–452

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin PA, Prince DA (1977) Penicillin-induced epileptiform activity in the hippocampal in vitro preparation. Ann Neurol 1: 463–469

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin PA, Prince DA (1980) Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity. Brain Res 183: 61–76

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin PA, Slawsky M (1977) Probable calcium spikes in hippocampal neurons. Brain Res 135: 157–161

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Barker JL (1984) Rat hippocampal neurons in culture: potassium conductances. J Neurophysiol 51: 1409–1433

    PubMed  CAS  Google Scholar 

  • Swann JW, Brady RJ (1984) Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells. Dev Brain Res 12: 243–254

    Article  Google Scholar 

  • Taylor CP, Dudek FE (1984) Excitation of hippocampal pyramidal cells by an electrical field effect. J Neurophysiol 52: 126–142

    PubMed  CAS  Google Scholar 

  • TraubRD, Dudek FE, Taylor CP, KnowlesWD (1985) Simu-lation of hippocampal after discharges synchronized by electrical interactions. Neuroscience 14: 1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Wong RKS, Prince DA (1979) Dendritic mechanisms underlying penicillin-induced epileptiform activity. Science 204: 228–231

    Google Scholar 

  • Wong RKS, Traub RD (1983) Synchronized burst discharge in disinhibited hippocampal slice. 1. Initiation in CA2-CA3 region. J Neurophysiol 49: 442–458

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haas, H.L. (1987). Special Features of the Hippocampal Formation with Respect to Seizure Conditions. In: Wieser, H.G., Elger, C.E. (eds) Presurgical Evaluation of Epileptics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71103-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71103-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71105-3

  • Online ISBN: 978-3-642-71103-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics