Advertisement

Magnetic Resonance Imaging and the Epileptic Focus

  • A. Kertesz
  • R. S. McLachlan
  • S. E. Black
  • R. L. Nicholson
  • T. Carr
  • W. T. Blume
Conference paper

Abstract

Nuclear magnetic resonance provides us with a new imaging modality which can be used not only to analyze the structure and structural pathology, but also to some extent the pathophysiology of the central nervous system. A large magnetic field and radio frequency pulse sequences are used to generate a signal consisting of several basic parameters of nuclear magnetic resonance: (1)proton density, (2)Ti constant or spin-lattice (longitudinal) relaxation time, and (3)T2 constant or spin-spin (horizontal) relaxation time. The resulting signal can be weighted for each of the parameters by altering the radio frequency pulse sequences. The most commonly used sequences are called inversion recovery (IR), which emphasizes Tt constant and provides gray-white matter contrast, and spin echo (SE), which emphasizes T2 constant and shows pathology. The signal is spatially encoded and computerized in a manner similar to computerized tomography (CT). For a detailed description of the technique, see Lauterbur (1973) and Pykett et al. (1982).

Keywords

Temporal Lobe Temporal Lobe Epilepsy Spin Echo Seizure Focus Brain Water Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou Khalil BW, Sackellares JC, Latack JT, Vanderzant CN (1984) Magnetic resonance imaging in refractory partial epilepsy. Epilepsia 25: 650Google Scholar
  2. Bakay L (1956) The blood brain barrier. Thomas, Springfield, 154 ppGoogle Scholar
  3. Engel J, Brown WJ, Kuhl DE, Phelps ME, Mazziotta JC, Crandall PH (1982) Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol 12: 518–528PubMedCrossRefGoogle Scholar
  4. Heinz ER, Jabaily J, Drayer BP, Osbourne D (1983) Transient hyperdense focal cortial abnormalities on unenhanced and enhanced CT scans: beware. J Comp Assist Tomogr 7: 195CrossRefGoogle Scholar
  5. Kertesz A, Black SE, Cooper PE, Stewart SE, Nicholson LR, Shewan C (1985) The use of MRI in stroke. Ann Neurol 18 (11): 121Google Scholar
  6. Lauterbur PC (1973) Image formation by induced local inter-actions: examples employing NMR. Nature 242: 190–191CrossRefGoogle Scholar
  7. Lorenzo AV, Shirahige IU, Liang M, Barlow CF (1972) Temporary alteration of cerebrovascular permeability of plasma protein during drug-induced seizures. Am J Physiol 223: 168–177Google Scholar
  8. Lukes SA, Crooks LE, Aminoff MS, Kaufman L, Panitch HS, Mills C, Norman D (1983) Nuclear magnetic resonance imaging in multiple sclerosis. Ann Neurol 13: 592–601PubMedCrossRefGoogle Scholar
  9. McLachlan RS, Black SE, Nicholson RL, Blume WT (1984) Nuclear magnetic resonance (NMR), a new approach to imaging in temporal lobe epilepsy. Annual meeting of American epilepsy society, San Francisco, November 6–11Google Scholar
  10. McNaughton FL, Rasmussen T (1975) Criteria for selection of patients for neurosurgical treatment. In: Purpura DP, Penry JK, Walter RD (eds) Neurosurgical management of the epilepsies. Raven, New York, pp 37–48Google Scholar
  11. Prensky AL, Swisher CN, DeVivo DC (1973) Positive brain scans in children with idiopathic focal epileptic seizures. Neurology 23: 798–807PubMedGoogle Scholar
  12. Pykett IL, Newhouse JH, Buonanno FS, Brady TJ, Goldman MR, Kistler JP, Pohost GM (1982) Principles of nuclear magnetic resonance imaging. Radiology 143: 157–168PubMedGoogle Scholar
  13. Riela AV, Penry JK, Laster DW, Schartze M (1984) Magnetic resonance imaging versus computerized cranial tomography in complex partial seizures. Epilepsia 25: 650Google Scholar
  14. Schoerner W, Felix R, Claussen C, Meencke D, Janz D (1984) Comparative evaluation of MR and CT in patients with temporal lobe epilepsy. Radiology 153: 142Google Scholar
  15. Spencer DD, Spencer SS, Williamson PD, Sostman HD, Gore JC, Mattson RH (1984) Nuclear magnetic resonance imaging in refractory epilepsy patients. Epilepsia 25: 650Google Scholar
  16. Spetzler RF, Zabramski JM, Kaufman B, Yeung HN (1983) Acute NMR changes during MCA occlusion: a preliminary study in primates. Stroke 14: 185–190PubMedCrossRefGoogle Scholar
  17. Sussman MN, Scanlon M, Garfinkle W, Callahan M, Barry E, Katz RI, Harner N (1984) Magnetic resonance imaging in temporal lobe epilepsy: comparison with EEG and computerized tomography. Epilepsia 25: 650–651Google Scholar
  18. Theodore WH, Dorwart R, Holmes M, Porter RJ, DiChiro G (1985) Neuroimaging in epilepsy: comparison of PET, CT and MRI. Neurology 25 (S): 135Google Scholar
  19. Wyler AR, Bolender N (1983) Preoperative CT diagnosis of mesial temporal sclerosis for surgical treatment of epilepsy. Ann Neurol 13: 59–64PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • A. Kertesz
    • 1
  • R. S. McLachlan
    • 2
  • S. E. Black
    • 1
  • R. L. Nicholson
    • 3
  • T. Carr
    • 3
  • W. T. Blume
    • 2
  1. 1.Department of Clinical Neurological SciencesSt. Joseph’s Hospital, Research InstituteLondonCanada
  2. 2.Department of Clinical Neurological Sciences, Epilepsy UnitUniversity HospitalLondonCanada
  3. 3.Department of Nuclear MedicineSt. Joseph’s HospitalLondonCanada

Personalised recommendations