Advertisement

Magnetoencephalography and Epilepsy

  • J. Vieth
Conference paper

Abstract

In the exciting area of biomagnetism, magnetoen-cephalography is one of the new diagnostic tools usable for epilepsies, but the method is still in technical and theoretical development and thus much more benefit must be expected.

Keywords

Volume Conductor Focal Epilepsy Epileptic Focus Equivalent Current Dipole Spontaneous Brain Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth DS, Sutherling W, Engel J Jr, Beatty J (1982) Neuromagnetic localization of epileptiform spike activity in the human brain. Science 218: 891–894PubMedCrossRefGoogle Scholar
  2. Barth DS, Sutherling W, Engel J Jr, Beatty J (1984a) Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science 223: 293–296PubMedCrossRefGoogle Scholar
  3. Barth DS, Sutherling W, Engel J Jr, Beatty J (1984b) Neuromagnetic localization of single and multiple sources under-lying epileptiform spikes in the human brain. In: Porter RJ, MattsonRH, WardAA, DamM (eds) Advances in epileptology: XVth epilepsy international symposium. Raven, New York, pp 379–384Google Scholar
  4. Barth DS, Sutherling W, Beatty J ( 1985 a) Animal neuromagnetometry and its specific application to the study of focal epileptic phenomena. In: Weinberg H, Stroink G, Katila T(eds) Biomagnetism: application and theory. Pergamon, New York, pp 237–248Google Scholar
  5. Barth DS, Sutherling W, Broffman J, Beatty J (1985b) Magnetic localization of a dipolar current source implanted in a sphere and a human cranium. Electroencephalogr Clin Neurophysiol 63: 260–273Google Scholar
  6. Baule G, McFee R (1963) Detection of the magnetic field of the heart. Am Heart J 66: 95–96PubMedCrossRefGoogle Scholar
  7. Beatty J, Richer F, Barth DS (1983) Magnetoencephalography. In: ColesMGH, PorgesSW, DonchinE (eds) Psychophysiology: systems, processes and applications. Guilford, New YorkGoogle Scholar
  8. Blum T, Bauer R, Kubicki St (1984 a) Registrierung visuell evo- zierter neuromagnetischer Felder nach fovealen Partialfeld- stimulationen. EEG-EMG15: 27–33Google Scholar
  9. Blum T, Saling E, Bauer R (1984b) Fetale Magnetoenzephalo-graphiel: Erstmalige pranatale Registrierung eines auditorisch evozierten magnetischen Feldes. EEG-EMG15: 34–37Google Scholar
  10. Carelli P, Foglietti I, Modena I, Romani GL (1983) Magnetic study of the spontaneous brain activity of normal subjects. II Nuovo Cimento 2D: 538–546CrossRefGoogle Scholar
  11. Chapman RM, Romani GL, Barbanera S, Leoni R, Modena I, Ricci GB, Campitelli F (1983) SQUID instrumentation and the relative covariance method for magnetic 3D localization of pathological cerebral sources. Lett Nuovo Cimento (2) 38: 549–554CrossRefGoogle Scholar
  12. Chapman RM, Ilmoniemi RJ, Barbanera S, Romani GL (1984) Selective localization of alpha brain activity with neuromagnetic measurements. Electroencephalogr Clin Neurophysiol 58: 560–572Google Scholar
  13. Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magneto-meter. Science 175: 664–666PubMedCrossRefGoogle Scholar
  14. Cohen D, Cuffm BN (1983) Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 56: 38–51PubMedCrossRefGoogle Scholar
  15. Cohen D, Edelsack EA, Zimmerman JE (1970) Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer. Appl Phys Lett 16: 278–280CrossRefGoogle Scholar
  16. Cuffm BN, Cohen D (1979) Comparison of the magnetoen-cephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 47: 131–146Google Scholar
  17. Erne SN (1983) SQUID sensors. In: Williamson SJ, Romani GL, Kaufman L, Modena I (eds) Biomagnetism, an interdisciplinary approach, vol 66. NATO advanced sciences institutes series. Plenum, New York, pp 69–84Google Scholar
  18. Geselowitz DB (1970) On the magnetic field generated outside an inhomogenous volume conductor by internal current sources. IEEE Trans Mag MAG-6: 346–347Google Scholar
  19. Grynszpan F, Geselowitz DB (1973) Model studies of the magnetocardiogram. Biophys J13: 911–925CrossRefGoogle Scholar
  20. Halgren E, Squires NK, Wilson CS, Rohrbaugh JW, Babb TL, Crandall PH (1980) Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science 210: 803–805PubMedCrossRefGoogle Scholar
  21. Hughes JR, Hendrix DE, Cohen J, Duffy FH, Mayman CI, Scholl ML, Cuffm BN (1976) Relationship of the magnetoencephalogram to the electroencephalogram. Normal wake and sleep activity. Electroencephalogr Clin Neurophysiol 40: 261–278PubMedCrossRefGoogle Scholar
  22. Hughes JR, Cohen J, Mayman CI, Scholl ML, Hendrix DE (1977) Relationship of the magnetoencephalogram to abnormal activity in the electroencephalogram. J Neurol 217: 93–97CrossRefGoogle Scholar
  23. Kaufman L, Williamson SJ (1982) Magnetic location of cortical activity. Ann N Y Acad Sci 388: 197–213PubMedCrossRefGoogle Scholar
  24. Meijs JWH, Peters MJ (1985) Computation of MEGs and EEGs using a realistic shaped multi-compartment model of the head. J Int Fed Med Biol Engineering, XIVICMBE and VIIICMP, Espoo, Finland, pp 36–37Google Scholar
  25. Modena I, Ricci GB, Barbanera S, Leoni R, Romani GL, Carelli P (1982) Biomagnetic measurements of spontaneous brain activity in epileptic patients. Electroencephalogr Clin Neurophysiol 54: 622–628PubMedCrossRefGoogle Scholar
  26. Nicolas P, Duret D, Teszner D, Tuomisto T (1983) Neuromagnetic measurements at hospital: instrumentation and preliminary tests. II Nuovo Cimento 2D: 184–194CrossRefGoogle Scholar
  27. NicolasP, GermainV, ThomasT, DuretD (1985) MEG representation based on piecewise circular models. In: Weinberg H, StroinkG, KatilaT(eds) Biomagnetism: application and theory. Pergamon, New York, pp 294–298Google Scholar
  28. OkadaY ( 1983 a) Neurogenesis of evoked magnetic fields. In: Williamson SJ, Romani GL, Kaufman L, Modena I (eds) Biomagnetism, an interdisciplinary approach, vol 66. NATO advanced science institutes series. Plenum, New York, pp 399–408Google Scholar
  29. Okada Y (1983b) Endogenous magnetic fields. In: Williamson SJ, Romani GL, Kaufman L, Modena I (eds) Biomagnetism, an interdisciplinary approach, vol 66. NATO advanced sciences institutes series. Plenum, New York, pp 460–468Google Scholar
  30. Okada Y (1983c) Somatic evoked magnetic fields. In: Williamson SJ, Romani GL, Kaufman L, Modena I (eds) Biomagnetism, an interdisciplinary approach, vol 66. NATO advanced sciences institutes series. Plenum, New York, pp 409–421Google Scholar
  31. Okada YC, Kaufman L, Williamson SJ (1983) The hippocampal formation as a source of the slow endogenous potential. Electroencephalogr Clin Neurophysiol 55: 417–426PubMedCrossRefGoogle Scholar
  32. Plonsey RW (1981) The magnetic field resulting from action currents on cylindrical fibers. Med Biol Eng Comp 19: 311–315CrossRefGoogle Scholar
  33. Reite M, Zimmerman JE, Edrich J, Zimerman J (1976) The human magnetoencephalogram: some EEG and related corre-lations. Electroencephalogr Clin Neurophysiol 40: 59–66PubMedCrossRefGoogle Scholar
  34. Ricci GB (1983) Clinical magnetoencephalography. II Nuovo Cimento 2D: 517–537CrossRefGoogle Scholar
  35. Ricci GB, Buonomo S, Peresson M, Romani GL, Salustri C, Modena I (1985) Multichannel neuromagnetic investigation of focal epilepsy. J Int Fed Med Biol Engineering, XIV ICMBE and VII ICMP, Espoo, Finland, pp 42–43Google Scholar
  36. Ricci GB, Leoni R, Romani GL, Campitelli F, Buonomo S, Modena I ( 1985 b) 3-D neuromagnetic localization of sources of interictal activity in cases of focal epilepsy. In: Weinberg H, Stroink G, Katila T (eds) Biomagnetism: application and theory. Pergamon, New York, pp 304–310Google Scholar
  37. Romani GL (1984) Biomagnetism: an application of SQUID sensors to medicine and physiology. Physica 126B: 70–81Google Scholar
  38. Romani GL, Williamson SJ, Kaufman L (1982) Biomagnetic instrumentation. Rev Sci Instrum 53: 1815–1845PubMedCrossRefGoogle Scholar
  39. Romani GL, Williamson SJ, Kaufman L (1982 a) Tonotopic organization of the human auditory cortex. Science 216: 1339–1340Google Scholar
  40. Romani GL, Williamson SJ, Kaufman L, Brenner O (1982b) Characterization of the human auditory cortex by the neu-romagnetic method. Exp Brain Res 47: 381–398PubMedCrossRefGoogle Scholar
  41. Sutherling W, Barth DS, Beatty J (1985) Magnetic fields of epileptic spike foci: equivalent localization and propagation. In: Weinberg H, Stroink G, Katila T (eds) Biomagnetism: application and theory. Pergamon, New York, pp 249–260Google Scholar
  42. Tripp JH (1983) Physical concepts and sources. In: Williamson SJ, Romani GL, Kaufman L, Modenal (eds) Biomagnetism, an interdisciplinary approach, vol.66. NATO advanced sciences institutes series. Plenum, New York, pp 101–139Google Scholar
  43. Vieth J (1970) Biopotentiale. Elektromedizin 15: 99–111Google Scholar
  44. Vieth J (1984) Die Magnetoenzephalographie, eine neue funktionsdiagnostische Methode. EEG — EMG15:111–118Google Scholar
  45. Weinberg H, Stroink G, Katila T (1985) Biomagnetism: applications and theory. Pergamon, New YorkGoogle Scholar
  46. Wikswo JP Jr (1983) Cellular action currents. In: Williamson SJ, Romani GL, KaufmanL, Modenal (eds) Biomagnetism, an interdisciplinary approach, vol 66. NATO advanced sciences institutes series. Plenum, New York, pp 173–207Google Scholar
  47. Williamson SJ, Kaufman L (1981a) Magnetic fields of the cerebral cortex. In: Erne SN, Hahlbohm HD, Luebbig H (eds) Biomagnetism. de Gruyter, Berlin, pp 353–402Google Scholar
  48. Williamson SJ, Kaufman L (1981b) Biomagnetism. J Magnetism Magn Mat 22: 129–201CrossRefGoogle Scholar
  49. Williamson SJ, Kaufman L (1983) Application of squid sensors to the investigation of neural activity in the human brain. IEEE Trans Mag MAG-19: 835–844Google Scholar
  50. Williamson SJ, Kaufman L (1985) Frontiers in the new science of biomagnetism. In: Weinberg H, Stroink G, Katila T (eds) Biomagnetism: application and theory. Pergamon, New York, pp 471–490Google Scholar
  51. Williamson SJ, Romani GL, Kaufman L, Modena I (eds) (1983) Biomagnetism, an interdisciplinary approach, vol 66. NATO advanced sciences institutes series. Plenum, New YorkGoogle Scholar
  52. Williamson SJ, Pellinzone M, Okada Y, Kaufman L, Crum DB, Marsden JR (1985) Five channel SQUID installation for un-shielded neuromagnetic measurements. In: Weinberg H, Stroink G, Katila T (eds) Biomagnetism: application and theory. Pergamon, New York, pp 46–51Google Scholar
  53. Wood CC, Allison T, Goff WR, Williamson PD (1980) On the neural origin of P300 in man. In: Kornhuber HH, Deecke L (eds) Motivation, motor, and sensory processes of the brain. Elsevier, Amsterdam, pp 51–56Google Scholar
  54. Zimmerman JE (1971) Sensitivity enhancement of superconducting quantum interference devices through the use of fractional-turn loops. J Appl Phys42: 4483–4487Google Scholar
  55. Zimmerman JE (1983) Cryogenics. In: Williamson SJ, Romani GL, Kaufman L, Modena I (eds) Biomagnetism, an inter-disciplinary approach, vol 66. NATO advanced sciences institutes series. Plenum, New York, pp 43–67Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • J. Vieth
    • 1
  1. 1.Dept. of Experimental Neuropsychiatry, Neurological ClinicUniversity of Erlangen-NürnbergErlangenFederal Republic of Germany

Personalised recommendations