Pathological Changes Relevant for Seizure Generation

  • Y. Robitaille


The type and extent of morphological changes which may be correlated with the electrophysiological phenomena characteristic of either the partial or generalized epilepsies cannot be dissociated from the molecular events underlying ictal activity. They must also reflect the abnormalities in neuronal-glial interrelationships which trigger or sustain neuronal seizure discharges. Neuronal pathological manifestations will first be explored, followed by relevant glial changes. The role of the blood brain barrier and other cell components will then be examined.


Temporal Lobe Epilepsy Seizure Focus Focal Epilepsy Epileptic Focus Pipecolic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babb TL, Jann Brown W, Pretorius J, Davenport C, Lieb JP, Crandall PH (1984 a) Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 25: 729–740Google Scholar
  2. Babb TL, Lieb JP, Jann Brown W, Pretorius J, Crandall PH (1984b) Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation. Epilepsia 25: 721–728PubMedCrossRefGoogle Scholar
  3. Beck DW, Vinters HV, Hart MN, Cancilla PA (1984) Glial cells influence polarity of the blood brain barrier. J Neuropathol Exp Neurol 43: 219–224PubMedCrossRefGoogle Scholar
  4. Bernstein JJ, Wells MR, Bernstein ME (1975) Dendrites and neuroglia following hemisection of rat spinal cord: effects of puromycin. In: Kreutzberg GW(ed) Advances in neurology, vol 12. Raven, New York, pp 439–451Google Scholar
  5. Bratz E (1899) Ammonshornbefunde bei Epileptischen. Arch Psychiatry Nervenkr 31: 820–836CrossRefGoogle Scholar
  6. Briere R, Sherwin AL, Robitaille Y, Olivier A, Quesney LF, Reader TA (1986) a-Adrenoceptors are decreased in human epileptic foci. Ann Neurol 19: 26–30PubMedCrossRefGoogle Scholar
  7. Brightman MW, Zis K, Anders J (1983) Morphology of cerebral endothelium and astrocytes as determinants of the neuronal microenvironment. Acta Neuropathol [Suppl] VIII: 21–23Google Scholar
  8. Brown WJ (1973) Structural substrates of seizure foci in the human temporal lobe. In: Brazier MAB (ed) Epilepsy: its phenomena in man. Academic, New York, pp 338–374Google Scholar
  9. Cancilla PA, DeBault LE (1983) Neutral amino acid transport properties of cerebral endothelial cells in vitro. J Neuropathol Exp Neurol 42: 191–199PubMedCrossRefGoogle Scholar
  10. Colonnier M (1964) Experimental degeneration in the cerebral cortex. J Anatomy 98: 47–53Google Scholar
  11. Earle KM, Baldwin M, Penfield W (1953) Incisural sclerosis and temporal lobe seizures produced by hippocampal herniation at birth. Arch Neurol Psychiatry 69: 27–42Google Scholar
  12. Emson PC, Joseph MH (1975) Neurochemical and morphological changes during the development of cobalt-induced epilepsy in the rat. Brain Res 93: 91–110PubMedCrossRefGoogle Scholar
  13. Falconer MA (1971) Genetic and related aetiological factors in temporal lobe epilepsy: a review. Epilepsia 12: 13–31PubMedCrossRefGoogle Scholar
  14. Falconer MA (1974) Mesial temporal (Amnion’s horn) sclerosis as a common cause of epilepsy: aetiology, treatment and prevention. Lancet 2: 767–770PubMedCrossRefGoogle Scholar
  15. Giacobini E, Guttierez MC (1983) GABA and pipecolic acid: a possible reciprocal modulation in the CNS, in glutamine, glutamate and GABA. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) The CNS. Liss, New York, pp 571–580Google Scholar
  16. Grisar T, Franck G, Delgado-Escueta AV (1983) Glial contribution to seizure: K+ activation of Na-K ATPase in bulk isolated glial cells and synaptosomes of epileptogenic cortex. Brain Res 261: 75–84PubMedCrossRefGoogle Scholar
  17. Halpern LM (1972) Chronically isolated aggregates of mammalian cerebral cortical neurons studied in situ. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy. Raven, New York, pp 197Google Scholar
  18. Harmony T, Urba-Holmgren R, Urbay CM, Szava S (1968) Na-K ATPase activity in experimental epileptogenic foci. Brain Res 11: 672–680PubMedCrossRefGoogle Scholar
  19. Harris AB (1972) Degeneration in experimental epileptic foci. Arch Neurol 26: 434–449PubMedGoogle Scholar
  20. Harris AB, Jenkins DP (1975) Intercellular space in epileptic brain. Neurosci Abstr 1: 179Google Scholar
  21. Haymaker W, Pentschew A, Margoles C, Bingham WG (1958) Occurrence of lesions in the temporal lobe in the absence of convulsive seizures. In: Baldwin M, Bailey P (eds) Temporal lobe epilepsy. Thomas, Springfield, pp 166–202Google Scholar
  22. Hertz L, Wu PH, Schousboe AC (1978) Evidence for net uptake of GABA into mouse astrocytes in primary cultures — its sodium dependence and potassium independence. Neurochem Res 3: 313–323PubMedCrossRefGoogle Scholar
  23. Huttenlocher PR, Heydemann P (1984) Fine structure of cortical tubers in tuberous sclerosis: a Golgi study. Ann Neurol 16: 595–602PubMedCrossRefGoogle Scholar
  24. Jann Brown W (1973) Structural substrates of seizure foci in the human temporal lobe. In: Brazier MAB (ed) Epilepsy, its phenomena in man. Academic, New York, pp 339–374Google Scholar
  25. Jasper HH (1970) Physiopathological mechanisms of posttraumatic epilepsy. Epilepsia 11: 73–80PubMedCrossRefGoogle Scholar
  26. Karlsson A, Fonnum F, Malthe-Sorenssen D, Storm-Mathisen J (1974) Effect of the convulsive agent 3-mercaptopropionic acid on the levels of GABA, other amino acids and glutamate decarboxylase in different regions of the rat brain. Biochem Pharmacol 23: 3053–3061PubMedCrossRefGoogle Scholar
  27. Lewis DV, Mutsuga N, Schuette WH, Van Buren J (1977) Potassium clearance and reactive gliosis in the alumina gel lesion. Epilepsia 18: 499–506PubMedCrossRefGoogle Scholar
  28. Margerison JH, Corsellis J (1966) Epilepsy and the temporal lobe: a clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89: 499–530PubMedCrossRefGoogle Scholar
  29. Mathieson G (1975) Pathology of temporal lobe foci. In: Penry JK, Daly DD (eds) Advances in neurology, vol 11. Raven, New York, pp 163–185Google Scholar
  30. Meynert T (1868) Der Bau der GroBhirnrinde und seine ortlichen Verschiedenheiten, nebst einem pathologisch-anatomischen Corollarium. Engelmann, LeipzigGoogle Scholar
  31. Morel F, Wildi E (1956) Sclerose ammonienne et epilepsies (etude anatomopathologique et statistique). Acta Neurol Belg 2: 61–74Google Scholar
  32. Mouritzen-Dam A (1982) Hippocampal neuron loss in epilepsy and after experimental seizures. Acta Neurol Scand 66: 601–642CrossRefGoogle Scholar
  33. Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221: 1629–1639PubMedGoogle Scholar
  34. Olney JW, Ho LO, Rhee V (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14: 61–76PubMedCrossRefGoogle Scholar
  35. Petito CK, Schaefer JA, Plum F (1977) Ultrastructural characteristics of the brain and blood brain barrier in experimental seizures. Brain Res 127: 251–267PubMedCrossRefGoogle Scholar
  36. Pfleger L (1880) Beobachtungen iiber Schrumpfung und Skle- rose des Ammonshorns bei Epilepsie. Allg Z Psychol 36: 359–365Google Scholar
  37. Reid SA, Sypert GW (1984) Chronic models of epilepsy. In: Schwartzkroin PA, Wheal H (eds) Electrophysiology of epilepsy. Academic, New York, pp 137–151Google Scholar
  38. Ribak CE (1985) Axon terminals of GABAergic chandelier cells are lost at epileptic foci. Brain Res 326: 251–260PubMedCrossRefGoogle Scholar
  39. Ribak CE, Reiffenstein RJ (1982) Selective inhibitory synapse loss in chronic cortical slabs: a morphological basis for epileptic susceptibility. Can J Physiol Pharmacol 60: 864–870PubMedCrossRefGoogle Scholar
  40. Ribak CE, Harris AB, Vaughn JE, Roberts E (1979) Inhibitory GABAergic nerve terminals decrease at sites of focal epilepsy. Science 205: 211–214PubMedCrossRefGoogle Scholar
  41. Ribak CE, Bradburne RM, Harris AB (1982) A preferential loss of GABAergic, symmetric synapses in epileptic foci: a quantitative ultrastructural analysis of monkey neocortex. J Neurosci 2: 1725–1735PubMedGoogle Scholar
  42. Robitaille Y, Sherwin A (1984) High affinity {3H}-£-alanine uptake by scar margins of ferric chloride-induced epileptogenic foci in rat isocortex. J Neuropathol Exp Neurol 43: 376–383PubMedGoogle Scholar
  43. Sano K, Malamud NC (1953) Clinical significance of sclerosis of the cornu ammonis. Arch Neurol Psychiatry 70: 40–53Google Scholar
  44. Scheibel ME, Scheibel AB (1973) Hippocampal pathology in temporal lobe epilepsy: a Golgi survey. In: Brazier MAB (ed) Epilepsy, its phenomena in man. Academic, New York, pp 311–337Google Scholar
  45. Scheibel AB, Paul L, Fried I (1983) Some structural substrates of the epileptic state. In: Jasper HH (ed) Basic mechanisms of neuronal hyperexcitability. Liss, New York, pp 109–130Google Scholar
  46. Sherwin A, Quesney F, Gauthier S, Olivier A, Robitaille Y et al. (1984) Enzyme changes in actively spiking areas of human epileptic cerebral cortex. Neurology 34: 927–933PubMedGoogle Scholar
  47. Sommer W (1880) Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr 10: 631–675CrossRefGoogle Scholar
  48. Suzuki R, Nitsch C, Fujimara K, Klatzo I (1984) Regional changes in cerebral blood flow and blood brain barrier per-meability during epileptiform seizures and in acute hypertension in rabbits. J Cereb Blood Flow Metab 4: 96–102PubMedCrossRefGoogle Scholar
  49. Trachtenberg MC (1983) Glial endocytosis of protein in the traumatized brain. J Neurosci Res 9: 413–423PubMedCrossRefGoogle Scholar
  50. Triggs WJ, Willmore LJ (1984) In vivo lipid peroxidation in rat brain following intracortical Fe2+ injection. J Neurochem 42: 976–980PubMedCrossRefGoogle Scholar
  51. Trottier S, Berger B, Chauvel P, Dedek J, Gay M (1981) Alterations of the cortical noradrenergic system in chronic cobalt epileptogenic foci in the rat: a histofluorescent and biochemical study. Neuroscience 6: 1069–1080PubMedCrossRefGoogle Scholar
  52. Trottier S, Claustre Y, Caboche J, Dedek J, Chauvel P, Nassif S, Scatton B (1983) Alterations of noradrenaline and serotonine uptake and metabolism in chronic cobalt-induced epilepsy in the rat. Brain Res 272: 255–262PubMedCrossRefGoogle Scholar
  53. Ulmar G (1981) Rat undercut cortex as a model for the study of central amino acid transmission. In: De Feudis G, Mandel P (eds) Amino acid neurotransmitters. Raven, New York, pp 105–113Google Scholar
  54. Ward AA (1983) Physiological basis of chronic epilepsy and mechanisms of spread. In: Delgado-Escueta AV, Wasterlain CG, Treiman DM, Porter RJ (eds) Status epilepticus. Raven, New York, pp 189–197Google Scholar
  55. Westrum LE, White LE, Ward AA Jr (1964) Morphology of the experimental focus. J Neurosurg 21: 1033–1046PubMedCrossRefGoogle Scholar
  56. Willmore LJ, Rubin JJ (1981) Antiperoxidant pretreatment and iron-induced epileptiform discharges in the rat: EEG and histopathologic studies. Neurology 31: 63–69PubMedGoogle Scholar
  57. Willmore LJ, Sypert GW, Munson JB (1978) Recurrent seizures induced by cortical iron injection: a model of posttraumatic epilepsy. Ann Neurol 4: 329–336PubMedCrossRefGoogle Scholar
  58. Woodbury DM, Engstrom FL, White HS (1984) Ionic and acid-base regulation of neurons and glia during seizures. Ann Neurol [Suppl] 16: 135–144Google Scholar
  59. Wyler AR (1977) Discrimination between epileptic and injury- induced repetitive firing in chronic epileptic cortex. Exp Neurol 55: 603–617PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Y. Robitaille
    • 1
  1. 1.Montreal Neurological Institute and Departments of Neuropathology, Neurology, and NeurosurgeryMcGill UniversityMontréalCanada

Personalised recommendations