Skip to main content

Mononuclear Phagocyte Function in the Perinatal Period

  • Conference paper
Immunology of the Neonate

Abstract

The monocyte-macrophage lineage represents a primitive first line of defense, maintained and refined in evolution. In higher organisms, while retaining their basic role of primary line of resistance, phagocytic cells have become integrated into the subsequently evolved mechanisms of specific immunity. Cooperation between lymphoid cells and macrophages occurs at different levels in the genesis of immune responses, and, in inflammatory sites, they play important roles in the expression of cell-mediated immune reactions. The role played by mononuclear phagocytes in resistance against infectious agents has long been recognized. Age-dependent resistance to infectious agents is a well-known phenomenon and host responses to a range of microorganisms, including bacteria, mycobacteria, yeasts, parasites, and viruses are relatively poor in the perinatal period in humans (Weston et al. 1977; Bellanti and Hurtado 1976). Considerable evidence has accumulated that selected functions of mononuclear phagocytes are defective in newborns and that this defect of the mononuclear phagocyte system plays a crucial role in increased susceptibility to some infectious agents (Pitt et al. 1977). In this review we will concisely discuss selected aspects of mononuclear phagocyte function in the perinatal period, emphasizing the selectivity of alterations. Some recent results on the immunobiology of placental and breast milk macrophages will also be mentioned, since, in addition to having attracted our attention, they have an obvious bearing on resistance in the perinatal period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DC, Schmalstieg FC, Amaout Mα, Kohl S, Tosi MF, Dana N, Buffone GJ, Hughes BJ, Brinkley BR, Dickey WD, Abramson JS, Springer T, Boxer LA, Hollers JM, Smith CW (1984) Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): Common relationship to diminished cell adherence. J Clin Invest 74: 536–551.

    Article  PubMed  CAS  Google Scholar 

  • Arnaout MA, Spits H, Terhorst C, Pitt J, Todd III RF (1984) Deficiency of leukocyte surface glycoprotein (LFA-1) in two patients with MO1 deficiency. J Clin Invest 74: 1291–1300.

    Article  PubMed  CAS  Google Scholar 

  • Beatty PG, Ochs HD, Harlan JM, Price TH, Rosen H, Taylor RF, Hansen JA, Klebanoff SJ (1984) Absence of a monoclonal-antibody-defined protein complex in boy with abnormal leukocyte function. Lancet 1: 535–537.

    Article  PubMed  CAS  Google Scholar 

  • Bellanti JA, Hurtado RC (1976) Immunology and resistance to infection. In: Remington JS, Klein JO (eds) Infectious diseases of the fetus and newborn infant. Saunders, Philadelphia, p 33.

    Google Scholar 

  • Biondi A, Rossing TH, Bennett J, Todd III RF (1984) Surface membrane heterogeneity among human mononuclear phagocytes. J Immunol 132: 1237–1243.

    PubMed  CAS  Google Scholar 

  • Bryson YJ, Winter HS, Gard SE, Fischer TJ, Stiehm ER (1980) Deficiency of immune interferon by leukocytes of normal newborns. Cell Immunol 55: 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Dana N, Todd III RF, Pitt J, Springer TA, Arnaout MA (1984) Deficiency of a surface membrane glycoprotein (M01) in man. J Clin Invest 73: 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA, Shparber M, Kent EF Jr, Wolff SM (1981) Production of leukocytic pyrogen from phagocytes of neonates. J Infect Dis 144: 337–343.

    Article  PubMed  CAS  Google Scholar 

  • Eife RF, Eife G, August CS, Kuhre WL, Staehr KJ (1974) Lymphotoxin production and blast cell transformation by cord blood lymphocytes: Dissociated lymphocyte function in newborn infants. Cell Immunol 14: 435–442.

    Article  PubMed  CAS  Google Scholar 

  • Hahn T, Levin S, Handzel ZT (1976) Leukocyte migration inhibition factor (LIF) production by lymphocytes of normal children, newborns, and children with immune deficiency. Clin Exp Immunol 24: 448–454.

    PubMed  CAS  Google Scholar 

  • Herberman RB, Holden HT (1978) Natural cell-mediated immunity. In: Klein G, Weinhouse S (eds) Advances in cancer research, vol 27. Academic, New York, p 305.

    Google Scholar 

  • Hirsch MS, Zisman B, Allison AC (1970) Macrophages and age-dependent resistance to herpes simplex virus in mice. J Immunol 104: 1160–1165.

    PubMed  CAS  Google Scholar 

  • Hoffman AA, Hayward AR, Kurnick JT, Defreitas EC, McGregor J, Harbeck R (1981) Presentation of antigen by human newborn monocytes to maternal tetanus toxoid-specific T-cell blasts. J Clin Immunol 1: 4–8.

    Article  Google Scholar 

  • Ido M, Uno K, Inaba K, Aotsuka Y, Muramatsu S (1984) Ontogeny of “macrophage” function: IV. Newborn mouse macrophages strongly suppress tumour cell growth and readily acquire cytolytic activity in comparison with adult macrophages. Immunology 52: 307–317.

    PubMed  CAS  Google Scholar 

  • Kalayanarooj S, Bryson Y (1984) Decreased Ia AG on human neonatal macrophages; a marker of maturation? Clin Res 32: 258A.

    Google Scholar 

  • Kaplan J, Shope TC, Bollinger RO, Smith J (1982) Human newborns are deficient in natural killer activity. J Clin Immunol 2: 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Keller MA, Kidd RM, Leake RD, Everett SL (1983) Lymphocyte-derived chemotactic factor production by neonatal lymphocytes. Pediatr Res 17: 799–802.

    Article  PubMed  CAS  Google Scholar 

  • Kelley VE, Fiers W, Strom TB (1984) Cloned human interferon-γ but not interferon-βor-α, induces expression of HLA-DR determinants by fetal monocytes and myeloid leukemic cell lines. J Immunol 132: 240–245.

    PubMed  CAS  Google Scholar 

  • Kobzik L, Godleski JJ, Biondi A, O’Hara C, Todd RF (1985) Immunohistologic analysis of a human pulmonary alveolar macrophage antigen. Clin Immunol Immunopathol 37: 217–219.

    Article  Google Scholar 

  • Kohl S (1983) Defective infant antiviral cytotoxicity to herpes simplex virus-infected cells. J Pediatr 102: 885–888.

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, Harmon MW (1980) Human neonatal leukocyte interferon production and natural killer cytotoxicity in response to herpes simplex virus. J Interferon Res 3: 461–463.

    Article  Google Scholar 

  • Kretschmer RR, Stewardson P, Gotoff SP (1976) Immunologic disorders in children. IMJ 149: 52–57.

    PubMed  CAS  Google Scholar 

  • Landahl CA (1976) Ontogeny of adherent cells. I. Distribution and ontogeny of A cells participating in the response to sheep erythrocytes in vitro. Eur J Immunol 6: 130–134.

    Article  PubMed  CAS  Google Scholar 

  • Lopez C, Kirkpatrick D, Fitzgerald P (1982) The role of NK (HSV-1) effector cells in resistance to herpesvirus infections in man. In: Herberman RD (ed) NK cells and other natural effector cells. Academic, New York, p 1445.

    Google Scholar 

  • Lu CY, Calamai EG, Unanue ER (1979) A defect in the antigen-presenting function of macrophages from neonatal mice. Nature 282: 327–329.

    Article  PubMed  CAS  Google Scholar 

  • Lucas A, Mitchell MD (1980) Prostaglandins in human milk. Arch Dis Child 55: 950–952.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Bar Shavit Z, Peri G, Polentarutti N, Bordignon C, Sessa C, Mangioni C (1980) Natural cytotoxicity on tumour cells of human macrophages obtained from diverse anatomical sites. Clin Exp Immunol 39: 776–784.

    PubMed  CAS  Google Scholar 

  • Mintz L, Drew WL, Hoo R, Finley TN (1980) Age-dependent resistance of human alveolar macrophages to herpes simplex virus. Infect Immun 28: 417–420.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Rattan S, Goyal RK (1975) Effect of prostaglandin E2 on esophageal motility in man. J Appl Physiol 39: 479–481.

    PubMed  CAS  Google Scholar 

  • Nakano K, Hosokawa T, Muramatsu S (1978) Ontogeny of macrophage function: I. Phagocytic activity and α-cell activity of newborn and adult mouse peritoneal macrophages. Dev Comp Immunol 2: 505–518.

    Article  PubMed  CAS  Google Scholar 

  • Pitt J, Barlow B, Heird WC (1977) Protection against experimental necrotizing enterocolitis by maternal milk: I. Role of milk leukocytes. Pediatr Res 11: 906–909.

    Article  PubMed  CAS  Google Scholar 

  • Ralfkiaer E, Stein H, Plesner T, Hou-Jensen K, Mason D (1984) In situ immunological characterization of Langerhans cells with monoclonal antibodies: Comparison with other dendritric cells in skin and lymph nodes. Virchows Arch [A] 403: 401–412.

    Article  CAS  Google Scholar 

  • Ray CG (1970) The ontogeny of interferon production by human leukocytes. J Pediatr 76: 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Reid B, Smith H, Friedman Z (1980) Prostaglandins in human milk. Pediatrics 66: 870–872.

    PubMed  CAS  Google Scholar 

  • Robert A, Lancaster C, Nezamis JE, Hanchar AJ (1978) Cytoprotective prostaglandins exogenous or endogenous can maintain gastric secretory function. Gastroenterology 74: 1086.

    Google Scholar 

  • Robert A, Nezamis JE, Lancaster C, Hanchar AJ (1979) Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology 77: 433–443.

    PubMed  CAS  Google Scholar 

  • Stenton WF, Parker CW (1980) Prostaglandins, macrophages, and immunity. J Immunol 125: 1–5.

    Google Scholar 

  • Stiehm ER, Winter HS, Bryson YJ (1979) Cellular (T-cell) immunity in the human newborn. Pediatrics 64(5/2 [Suppl]): 814–821.

    PubMed  CAS  Google Scholar 

  • Stiehm ER, Sztein MB, Steeg PS., Mann D, Newland C, Blaese M, Oppenheim JJ (1985) Deficient DR antigen expression on human cord blood monocytes. Reversal with lymphokines. Clin Immunol Immunopathol (in press)

    Google Scholar 

  • Taylor S, Bryson YJ (1985) Impaired production of γ-interferon by newborn cells in vitro is due to a functionally immature macrophage. J Immunol 134: 1493–1497.

    PubMed  CAS  Google Scholar 

  • Todd RF III, Schlossmann SF (1984) Utilization of monoclonal antibodies in the characterization of monocyte-macrophage differentiation antigens. In: Bellanti JA, Herscowitz HB (eds.) The reticuloendothelial system: A comprehensive treatise, vol 6: Immunology. Plenum, New York, p 87.

    Google Scholar 

  • Van Furth R (ed) (1980) Mononuclear phagocytes. Functional aspects. Nijhoff, The Hague.

    Google Scholar 

  • Vicenzi, E, Biondi A, Bordignon C, Rambaldi A, Donati MB, Mantovani A (1984) Human mononuclear phagocytes from different anatomical sites differ in their capacity to metabolize arachidonic acid. Clin Exp Immunol 57: 385–392.

    PubMed  CAS  Google Scholar 

  • Wakasugi N, Virelizier J-L (1985) Defective IFN-γ production in the human neonate. I. Dysregulation rather than intrinsic abnormality. J Immunol 134: 167–171.

    PubMed  CAS  Google Scholar 

  • Wakasugi N, Virelizier J-L, Arenzana-Seisdedos F, Rothhut B, Mencia Huerta J-M, Russo-Marie F, Fiers W (1985) Defective IFN-γ production in the human neonate: II. Role of increased sensitivity to the suppressive effects of prostaglandin E. J Immunol 134: 172–176.

    PubMed  CAS  Google Scholar 

  • Weston WL, Carson BS, Barkin RM, Slater GD, Dustin RD, Hecht SK (1977) Monocyte-macrophage function in the newborn. Am J Dis Child 131: 1241–1242.

    PubMed  CAS  Google Scholar 

  • Wilson CB, Haas JE (1984) Cellular defenses against Toxoplasma gondii in newborns. J Clin Invest 73: 1606–1616.

    Article  PubMed  CAS  Google Scholar 

  • Wilson CB, Westall J (1984) Interleukin 2 (IL2) and macrophage activation factor (MAF) production by newborn lymphocytes. Clin. Res. 32: 267A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biondi, A., Poli, G., Parravicini, C., Molinari, A., Mantovani, A. (1987). Mononuclear Phagocyte Function in the Perinatal Period. In: Burgio, G.R., Hanson, L.Å., Ugazio, A.G. (eds) Immunology of the Neonate. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71094-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71094-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71096-4

  • Online ISBN: 978-3-642-71094-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics