Skip to main content

Physiology of the Sweet Taste

  • Conference paper
Progress in Sensory Physiology

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 8))

Abstract

In this paper we review the present status of the physiology of the sweet taste. This involves the reception of an external stimulus by chemoreceptors (molecules), the sensitivity of neural elements and the qualitative and intensity aspects of perception. However, with regard to some physiological aspects, the sweet taste cannot actually be considered in isolation from other taste qualities. Part A of this paper covers concepts and data relevant to general gustation; Part B is devoted more specifically to the sweet taste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen HT, Funakoshi M, Zotterman Y (1963) Electrophysiological responses to sugar and their depression by salt. In: Zotterman Y (ed) Olfaction and taste I. Pergamon, Oxford, pp 177–192

    Google Scholar 

  • Andersson B, Landgren S, Olsson L, Zotterman Y (1950) The sweet taste fibres of the dog. Acta Physiol Scand 21:105–119

    PubMed  CAS  Google Scholar 

  • Azuma S, Yamamoto T, Kawamura Y (1984) Studies on gustatory responses of amygdaloid neurons in rats. Exp Brain Res 56:12–22

    PubMed  CAS  Google Scholar 

  • Bartoshuk LM (1975) Taste mixtures: is mixture suppression related to compression? Physiol Behav 14:643–649

    PubMed  CAS  Google Scholar 

  • Bartoshuk LM (1979) Bitter taste of saccharin related to the genetic ability to taste the bitter substance 6-n-propylthiouracil. Science 205:934–935

    PubMed  CAS  Google Scholar 

  • Bartoshuk LM, Cleveland CT (1977) Mixtures of substances with similar tastes. Sensory Processes 1:177–186

    PubMed  CAS  Google Scholar 

  • Bartoshuk LM, McBurney DH, Pfaffman C (1964) Taste of sodium chloride solutions after adaptation to sodium chloride: implications for the “water taste”. Science 143:967–968

    PubMed  CAS  Google Scholar 

  • Bartoshuk LM, Dateo GP, Vandenbelt DJ, Buttrick RL, Long L Jr (1969) Effects of Gymnema sylvestre and Synsepalum dulcificum on taste in man. In: Pfaffman C (Ed) Olfaction and taste III. Rockefeller University Press, New York, pp 436–444

    Google Scholar 

  • Bartoshuk LM, Rennert K, Rodin J, Stevens JC (1982) Effects of temperature on the perceived sweetness of sucrose. Physiol Behav 28:905–910

    PubMed  CAS  Google Scholar 

  • Bartoshuk LM, Desnoyers S, O’Brien M, Gent JF, Catalanotto FC (1985) Taste stimulation of localized tongue areas: the Q-tip test. Proceedings of the 7th annual meeting of the association for chemoreception sciences, Sarasota, abstract no 14

    Google Scholar 

  • Bealer SL, Smith DV (1975) Multiple sensitivity to chemical stimuli in single human taste papillae. Physiol Behav 14:795–799

    PubMed  CAS  Google Scholar 

  • Beckstead RM, Norgren R (1979) An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J Comp Neurol 184 (3):455–472

    PubMed  CAS  Google Scholar 

  • Beidler LM (1953) Properties of chemoreceptors of tongue of rat. J Neurophysiol 16:595–607

    PubMed  CAS  Google Scholar 

  • Beidler LM (1954) A theory of taste stimulation. J Gen Physiol 38:133–139

    PubMed  CAS  Google Scholar 

  • Beidler LM (1962) Taste receptor stimulation. In: Butler JAV, Huxley HE, Zirkel RE (eds) Progress in biophysics and biophysical chemistry XII. Pergamon, New York, pp 109–151

    Google Scholar 

  • Beidler LM, Tonosaki K (1984) Multiple receptors sites. Proceedings of the eighth international symposium on olfaction and taste, Melbourne, 1983. Chem Senses 8 (3):244

    Google Scholar 

  • Beidler LM, Fishman IY, Hardiman CW (1955) Species differences in taste responses. Am J Physiol 181:235–239

    PubMed  CAS  Google Scholar 

  • Belitz HD, Chen W, Jugel H, Treleano R, Wieser H, Gasteiger J, Marsili M (1979) Sweet and bitter compounds: structure and taste relationship. In: Boudreau JC (ed) Food taste chemistry. American Chemical Society, Washington, pp 93–131

    Google Scholar 

  • Benjamin RM (1963) Some thalamic and cortical mechanisms of taste. In: Zotterman Y (ed) Olfaction and taste I. Pergamon, pp 309–330

    Google Scholar 

  • Benjamin RM, Akert K (1959) Cortical and thalamic areas involved in taste discrimination in the albino rat. J Comp Neurol 111:231–260

    PubMed  CAS  Google Scholar 

  • Benzecri JP et al. (1973) L’analyse des données, vol 1, vol 2. Dunod, Paris

    Google Scholar 

  • Bernard RA, Nord SG (1971) A first order synaptic relay for taste fibers in the pontine brain stem of the cat. Brain Res 30:349–356

    PubMed  CAS  Google Scholar 

  • Biedenbach MA, Chan KY (1971) Tongue mechanoreceptors: comparison of afferent fibres in the lingual nerve and chorda tympani. Brain Res 35:584–588

    PubMed  CAS  Google Scholar 

  • Birch GG, Lindley MG (1973) Structural functions of taste in the sugar series: effects of aglycones on the sensory properties of simple glycoside structures. J Food Sci 38:665–667

    Google Scholar 

  • Birch GG, Latymer Z, Holloway M (1980) Intensity/time relationships in sweetness: evidence for a queue hypothesis in taste chemoreception. Chem Senses 5 (1):63–78

    CAS  Google Scholar 

  • Block CH, Schwartzbaum JS (1983) Ascending efferent projections of the gustatory parabrachial nuclei in the rabbit. Brain Res 259:1–9

    PubMed  CAS  Google Scholar 

  • Boudreau JC, Alev N (1973) Classification of chemoresponsive tongue units of the cat geniculate ganglion. Brain Res 54:157–175

    PubMed  CAS  Google Scholar 

  • Boudreau JC, Anderson W, Oravec J (1975) Chemical stimulus determinants of cat geniculate ganglion chemoresponsive group II unit discharge. Chem Senses Flavor 1 (4):495–518

    CAS  Google Scholar 

  • Boudreau JC, Oravec JJ, Hoang NK (1982) Taste systems of goat geniculate ganglion. J Neurophysiol 48 (5): 1226–1242

    PubMed  CAS  Google Scholar 

  • Braun JJ, Lasiter PS, Kiefer SW (1982) The gustatory neocortex of the rat. Physiol Psychol 10(l):13–45

    Google Scholar 

  • Brouwer JN, Hellekant G, Kasahara H, van der Wel H, Zotterman Y (1973) Electrophysiological study of the gustatory effects of the sweet proteins monellin and thaumatin in monkey, guinea pig and rat. Acta Physiol Scand 89:550–557

    PubMed  CAS  Google Scholar 

  • Buresova O (1978) Neocortico-amygdalar interaction in the conditioned taste aversion in rats. Activitas Nervosa Superior (Praha) 20:224–230

    CAS  Google Scholar 

  • Cagan RH (1971) Biochemical studies of taste sensation I. Binding of 14C labeled sugars to bovine taste papillae. Biochim Biophys Acta 252:199–206

    PubMed  CAS  Google Scholar 

  • Cagan RH, Boyle AG (1984) Biochemical studies of taste sensation. XL Isolation, characterization and taste ligand binding activity of plasma membranes from catfish taste tissue. Biochim Biophys Acta 799:230–237

    PubMed  CAS  Google Scholar 

  • Cagan RH, Morris RW (1979) Biochemical studies of taste sensations: binding to taste tissue of 3 H labelled monellin, a sweet-tasting protein. Proc Nat Acad Sci 76 (4):1692–1696

    PubMed  CAS  Google Scholar 

  • Caprio J (1978) Olfaction and taste in the channel catfish: an electrophysiological study of the responses to amino acids and derivatives. J Comp Physiol 123:357–371

    Google Scholar 

  • Cardello AV (1978) Chemical stimulation of single human fungiform taste papillae: sensitivity profiles and locus of stimulation. Sensory Processes 2:173–190

    PubMed  CAS  Google Scholar 

  • Cardello AV (1981) Comparison of taste qualities elicited by tactile, electrical and chemical stimulation of single human taste papillae. Percept Psychophys 29 (2):163–169

    PubMed  CAS  Google Scholar 

  • Chang F-C T, Scott TR (1984) Conditioned taste aversions modify neural responses in the rat nucleus tractus solitarius. J Neurosci 4 (7):1850–1862

    PubMed  CAS  Google Scholar 

  • Chevreul ME (1824) Des différentes manières dont les corps agissent sur l’organe du goût. J Physiol Exp Pathol 4:127–131

    Google Scholar 

  • Cohn C (1914) Organic flavours. The relation of chemical constitution to taste. Pharmazeutische Zentralhalle 55:735–747

    CAS  Google Scholar 

  • Collings VB (1974) Human taste response as a function of locus of stimulation on the tongue and soft palate. Percept Psychophys 16 (1):69–174

    Google Scholar 

  • Curtis DW, Stevens DA, Lawless HT (1984) Perceived intensity of the taste of sugar mixtures and acid mixtures. Chemical Senses 9 (2):107–120

    CAS  Google Scholar 

  • Dastoli FR, Price S (1966) Sweet sensitive protein from bovine taste buds: isolation and assay. Science 154:905–907

    PubMed  CAS  Google Scholar 

  • Dickman JD, Sweazey RD, Smith DV (1982) Converging taste receptor inputs to the hamster solitary nucleus. Proceedings of the 4th annual meeting of the association for chemoreception sciences. Sarasota, Abstract, p 7

    Google Scholar 

  • DiLorenzo PM, Schwartzbaum JS (1982a) Coding of gustatory information in the pontine parabrachial nuclei of the rabbit: magnitude of neural response. Brain Res 251:229–244

    CAS  Google Scholar 

  • DiLorenzo PM, Schwartzbaum JS (1982b) Coding of gustatory information in the pontine parabrachial nuclei of the rabbit: temporal patterns of neural response. Brain Res 251:245–257

    CAS  Google Scholar 

  • Doetsch GS, Erickson RP (1970) Synaptic processing of taste-quality information in the nucleus tractus solitarius of the rat. J Neurophysiol 33 (4):490–507

    PubMed  CAS  Google Scholar 

  • Dugas du Villard X, Van der Wel H, Brouwer JN (1980) Enhancement of the perceived sucrose sweetness in the rat by thaumatin. Chemical Senses 5 (2):93–98

    Google Scholar 

  • Dugas du Villard X, Her C, Mac Leod P (1981) Qualitative discrimination of sweet stimuli: behavioural study on rats. Chem Senses 6 (2):143–148

    Google Scholar 

  • Erickson RP (1963) Sensory neural patterns and gustation. In: Zotterman Y (ed) Olfaction and taste I. Macmillan, New York, pp 205–213

    Google Scholar 

  • Erickson RP (1968) Stimulus coding in topographic and nontopographic afferent modalities: on the significance of the activity of individual sensory neurons. Physiol Rev 75 (6):447–465

    CAS  Google Scholar 

  • Erickson RP (1982) The across-fibre pattern theory: an organizing principle for molar neural function. Contrib Sensory Physiol 6:79–110

    Google Scholar 

  • Erickson RP (1983a) Taste: a time for re-evaluation. ECRO News Lett no 27:281–282

    Google Scholar 

  • Erickson RP (1983b) Thomas Young: on a zen riddle and the single neuron basis of behavior. Lecture given at the Eastern physiological association meetings. April 8, Philadelphia

    Google Scholar 

  • Erickson RP (1984) On the neural bases of behavior. Am Sci 72:233–241

    Google Scholar 

  • Erickson RP, Covey E (1980) On the singularity of taste sensation. Physiol Behav 25:527–533

    PubMed  CAS  Google Scholar 

  • Erickson RP, Poulos DA (1973) On the qualitative aspect of the temperature sense. Brain Res 61:107–112

    PubMed  CAS  Google Scholar 

  • Erickson RP, Doetsch GS, Marshall DA (1965) The gustatory neural response function. J Gen Physiol 2:247–263

    Google Scholar 

  • Erickson RP, Covey E, Doetsch GS (1980) Neuron and stimulus typologies in the rat gustatory system. Brain Res 196:513–519

    PubMed  CAS  Google Scholar 

  • Faull JR, Halpern BP (1972) Taste stimuli: time course of peripheral nerve response and theoretical models. Science 178:73–75

    PubMed  CAS  Google Scholar 

  • Faurion A (1982) Etude des mecanismes de la chimioréception du goût sucré. Thesis, Université Pierre et Marie Curie Paris VI

    Google Scholar 

  • Faurion A (1983) Taste: a time for re-evaluation — reply. ECRO News Lett no 28:291–293

    Google Scholar 

  • Faurion A, Bertrand B (1985) Differential inhibition of the sweet taste of 20 sweeteners in 5 human subjects by pronase E. (in preparation)

    Google Scholar 

  • Faurion A, Mac Leod P (1982) Sweet taste receptor mechanisms. In: Birch GG, Parker KJ (eds) Nutritive sweeteners. Applied Science, Barking, England, pp 247–273

    Google Scholar 

  • Faurion A, Saito S, Mac Leod P (1977) Experimental evidence for several receptor sites involved in sweet taste chemoreception. In: Le Magnen J, Mac Leod P (eds) Olfaction and taste VI. I R L, London, p 60 (Abstract)

    Google Scholar 

  • Faurion A, Bonaventure L, Bertrand B, Mac Leod P (1979) Multiple approach of the sweet taste sensory continuum: psychophysical and electrophysiological data. In: Van der Starre H (ed) Olfaction and taste VII. I R L, London, p 86 (Abstract)

    Google Scholar 

  • Faurion A, Saito S, Mac Leod P (1980) Sweet taste involves several distinct receptor mechanisms. Chemical Senses 5 (2):107–121

    CAS  Google Scholar 

  • Ferrell F (1984) Gustatory nerve response to sugars in neonatal puppies. Neurosci Behav Rev 8:185–190

    CAS  Google Scholar 

  • Fisher RS, Almli CR (1984) Postnatal development of sensory influences on lateral hypothalamic neurons of the rat. Dev Brain Res 12:55–75

    Google Scholar 

  • Fishman IY (1957) Single fiber gustatory impulses in rat and hamster. J Cell Comp Physiol 49:319–334

    CAS  Google Scholar 

  • Fonberg E (1969) Effects of small dorsomedial amygdala lesions on food intake and acquisition of instrumental alimentary reactions in dogs. Physiol Behav 4:739–743

    Google Scholar 

  • Fox AL (1932) The relationship between chemical constitution and taste. Proc Nat Acad Sci 18:115–120

    PubMed  CAS  Google Scholar 

  • Frank M (1973) An analysis of hamster afferent taste nerve response functions. J Gen Physiol 61:588–618

    PubMed  CAS  Google Scholar 

  • Frank M, Pfaffmann C (1969) Taste nerve fibers: a random distribution of sensitivities to four tastes. Science 164:1183–1185

    PubMed  CAS  Google Scholar 

  • Frank ME, Hettinger TP (1984) Temporal properties of impulses in sucrose responsive hamster taste neurons. Proceedings of the 6th annual meeting of the association for chemoreception sciences. Sarasota abstract

    Google Scholar 

  • Frijters JER, Oude Ophuis PAM (1983) The construction and prediction of psychophysical power functions for the sweetness of equiratio sugar mixtures. Perception 12:753–767

    PubMed  CAS  Google Scholar 

  • Frijters JER, DeGraaf C, Koolen HCM (1984) The validity of the equiratio taste mixture model investigated with sorbitol-sucrose mixtures. Chem Senses 9 (3):241–248

    Google Scholar 

  • Funakoshi M, Ninomiya Y (1977) Neural code for taste quality in the thalamus of the dog. In: Katsuki Y, Sato M, Takagi S, Oomura Y (eds) Food intake and chemical senses. Japan Societies Press, Tokyo, pp 223–232

    Google Scholar 

  • Funakoshi M, Ninomiya Y (1983) Relations between the spontaneous firing rate and taste responsiveness of the dog cortical neurons. Brain Res 262:155–159

    PubMed  CAS  Google Scholar 

  • Funakoshi M, Kasahara Y, Yamamoto T, Kawamura Y (1972) Taste coding and central perception. In: Schneider D (ed) Olfaction and taste IV. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 336–342

    Google Scholar 

  • Ganchrow JR, Erickson RP (1970) Neural correlates of gustatory intensity and quality. J Neurophysiol 33:768–783

    PubMed  CAS  Google Scholar 

  • Gent JF (1979) An exponential model for adaptation in taste. Sensory Processes 3:303–316

    PubMed  CAS  Google Scholar 

  • Gent JF, Bartoshuk LM (1983) Sweetness of sucrose, neohesperidin dihydrochalcone, and saccharin is related to genetic ability to taste the bitter substance 6-n-propylthiouracil. Chem Senses 7 (3/4):265–272

    CAS  Google Scholar 

  • Giachetti I, Mac Leod P (1975) Cortical neuron responses to odours in the rat. In: Denton D, Coghlan JP (eds) Olfaction and taste V. Academic, New York pp 303–307

    Google Scholar 

  • Giachetti I, Mac Leod P (1977) Olfactory input to the thalamus: evidence for a ventroposteromedial projection. Brain Res 125:166–169

    PubMed  CAS  Google Scholar 

  • Gillan DJ (1984) Evidence for peripheral and central processes in taste adaptation. Percept Psychophys 35 (1):1–4

    PubMed  CAS  Google Scholar 

  • Giza BK, Scott TR (1983) Blood glucose selectively affects taste-evoked activity in rat nucleus tractus solitarius. Physiol Behav 31:643–650

    PubMed  CAS  Google Scholar 

  • Glaser D (1979) Gustatory preference behaviour in primates. In: Kroeze JHA (ed) Proceedings of the 3rd symposium organised by ECRO: Preference and chemoreception, pp 51–61

    Google Scholar 

  • Glaser D, Hellekant G, Brouwer JN, Van der Wel H (1978) The taste responses in primates to the proteins thaumatin and monellin and their phylogenetic implications. Folia Primatol 29:56–63

    PubMed  CAS  Google Scholar 

  • Glaser D, Hellekant G, Brouwer JN, Van der Wel H (1984) Effects of gymnemic acid on sweet taste perception in primates. Chem Senses 8 (4):367–374

    Google Scholar 

  • Goldstein NI, Cagan RH (1982) Biochemical studies of taste sensation: monoclonal antibody against L-alanine binding activity of catfish taste epithelium. Proc Nat Acad Sci USA 79:7595–7597

    PubMed  CAS  Google Scholar 

  • Goto N, Yamamoto T, Kaneko M, Tomita H (1983) Primary pontine hemorrhage and gustatory disturbance: clinicoanatomic study. Stroke 14 (4):507–511

    PubMed  CAS  Google Scholar 

  • Grill HJ, Norgren R (1978) The taste reactivity test. II Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res 143:281–297

    PubMed  CAS  Google Scholar 

  • Haefeli RJ, Glaser D (1984) Gustatory threshold values of xylitol in primates. Folia Primatol 43:181–184

    PubMed  CAS  Google Scholar 

  • Halpern BP (1967) Chemotopic coding for sucrose and quinine hydrochloride in the nucleus of the fasciculus solitarius. In: Hayashi T (ed) Olfaction and taste II. John Hopkins, Baltimore, pp 549–562

    Google Scholar 

  • Halpern BP, Nelson LM (1965) Bulbar gustatory response to anterior and posterior tongue stimulation in the rat. Am J Physiol 209:105–119

    PubMed  CAS  Google Scholar 

  • Halpern BP, Tapper DN (1971) Taste stimuli: quality coding time. Science 171:1256–1258

    PubMed  CAS  Google Scholar 

  • Hamilton RB, Norgren R (1984) Central projections of gustatory nerves in the rats. J Comp Neurol 222:560–577

    PubMed  CAS  Google Scholar 

  • Hänig DP (1901) Zur Psychophysik des Geschmacksinnes. Philosophische Studien (Leipzig) 17:576–623

    Google Scholar 

  • Hara S (1955) Interrelationship among stimulus intensity, stimulated area and reaction time in the human gustatory sensation. Bull Tokyo Med Dent Univ 2:147–158

    Google Scholar 

  • Harder DB, Whitney G, Frye P, Smith JC, Rashotte ME (1984) Strain differences among mice in taste psychophysics of sucrose octaacetate. Chemical Senses 9 (4):311–323

    CAS  Google Scholar 

  • Harper HW, Jay JR, Erickson RP (1966) Chemically evoked sensations from single human taste papillae. Physiol Behav 1:319–325

    CAS  Google Scholar 

  • Hayashi H (1976) Nerve impulse sequences correlated with the four primary taste qualities in rat. Tohoku J Exp Med 118:25–33

    PubMed  CAS  Google Scholar 

  • Hellekant G (1975) Different types of sweet receptors in mammals. In: Denton DA, Coghlan JP (eds) Olfaction and taste V. Academic, New York, pp 15–22

    Google Scholar 

  • Hellekant G (1976) On the gustatory effects of gymnemic acid and miraculin in dog, pig and rabbit. Chem Senses Flavor 2:85–95

    CAS  Google Scholar 

  • Hellekant G, Roberts TW (1983) Study of the effect of gymnemic acid on taste in hamster. Chem Senses 8 (2):195–202

    CAS  Google Scholar 

  • Hellekant G, Hagstrom EC, Kasahara Y, Zotterman Y (1974) On the gustatory effects of miraculin and gymnemic acid in the monkey. Chem Senses Flavor 1:137–145

    CAS  Google Scholar 

  • Hellekant G, Glaser D, Brouwer JN, Van der Wel H (1976) Gustatory effects of miraculin, monellin and thaumatin in the Saguinus midas tamarin monkey studied with electrophysiological and behavioural techniques. Acta Physiol Scand 97:241–250

    PubMed  CAS  Google Scholar 

  • Hellekant G, Glaser D, Brouwer J, Van der Wel H (1981) Gustatory responses in three prosimian and two simian primate species (Tupaia glis, Nycticebus coucang, Galago senegalensis, Callithrix j. Jacchus and Saguinus midas niger) to six sweeteners and miraculin and their phylogenetic implications. Chem Senses 6 (3):165–173

    CAS  Google Scholar 

  • Henning H (1916) Die Qualitätenreihe des Geschmacks. Z Psychol Z Angew Psychol Charakterkd 74:203–219

    Google Scholar 

  • Hermann GE, Kohlerman NJ, Rogers RC (1983) Hepatic-vagal and gustatory afferent interactions in the brainstem of the rat. J Auton Nerv System 9, 477–495

    CAS  Google Scholar 

  • Herrick CJ (1905) The central gustatory paths in the brains of bony fishes. J Comp Neurol 15:375–456

    Google Scholar 

  • Hidaka I (1970) The effects of transition metals on the palatal chemoreceptors of the carp. Jpn J Physiol 20:599–609

    PubMed  CAS  Google Scholar 

  • Hiji Y (1975) Selective elimination of taste response to sugars by proteolytic enzymes. Nature 256:427–429

    PubMed  CAS  Google Scholar 

  • Hiji Y, Ito J (1977) Removal of sweetness by proteases and its recovery mechanism in rat taste cells. Comp Biochem Physiol 58 (1A):109–113

    CAS  Google Scholar 

  • Hiji Y, Sato M (1972) Properties of sweet sensitive protein extracted from the rat tongue. In: Schneider D (ed) Olfaction and taste IV. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 221–225

    Google Scholar 

  • Hiji Y, Sato M (1973) Isolation of the sugar-binding protein from rat taste buds. Nature 244:91–93

    CAS  Google Scholar 

  • Hiji Y, Kobayashi N, Sato M (1969) Kumamoto Med J 22:104–107

    PubMed  CAS  Google Scholar 

  • Hiji Y, Kobayashi N, Sato M (1971) Sweet-sensitive protein from the rat tongue: its interaction with various sugars. Comp Biochem Physiol [B] 39:367–375

    CAS  Google Scholar 

  • Hill AV (1913) The combinations of haemoglobin with oxygen and with carbon mono-oxide I. Biochem J 7:471–480

    PubMed  CAS  Google Scholar 

  • Hopkins CY (1942) Taste differences in compounds having the NCS linkage. Can J Res 20B:268–273

    CAS  Google Scholar 

  • Hornung DE, Enns MP (1984) The independence and integration of olfaction and taste. Chem Senses 9 (2):97–106

    Google Scholar 

  • Hough CAM, Edwardson JA (1978) Antibodies to thaumatin as a model of the sweet taste receptor. Nature 271:381–383

    PubMed  CAS  Google Scholar 

  • Hyman AM, Frank ME (1980a) Effect of binary taste stimuli on the neural activity of the hamster chorda tympani. J Gen Physiol 76:125–142

    PubMed  CAS  Google Scholar 

  • Hyman AM, Frank ME (1980b) Sensitivities of single nerve fibers in the hamster chorda tympani to mixtures of taste stimuli. J Gen Physiol 76:143–173

    PubMed  CAS  Google Scholar 

  • Ichioka M (1972) Neural correlates of taste sensation quality. Experientia 28:523–524

    PubMed  CAS  Google Scholar 

  • Ichioka M, Hayashi H (1974) Spatio-temporal nerve impulse patterns in rat chorda tympani fibres in correlation with four primary taste qualities. Proc Jpn Acad 50:392–395

    Google Scholar 

  • Iggo A, Leek BF (1967) The afferent innervation of the tongue of the sheep. In: Hayashi T (ed) Olfaction and taste II. Pergamon, London, pp 493–507

    Google Scholar 

  • Imoto T, Yamada H, Hiji Y (1981) Flourescent labeling of the proteins on taste papillae. In: Hiji Y (ed) Proceedings of the 15th Japanese symposium on taste and smell. Osaka University, Osaka, pp 206–209

    Google Scholar 

  • Ishiko N (1974) Local gustatory functions associated with segmental organization of the anterior portion of the cat’s tongue. Exp Neurol 45:341–354

    PubMed  CAS  Google Scholar 

  • Ishiko N, Akagi T (1972) Topographical organization of gustatory nervous system. In: Schneider D (ed) Olfaction and taste IV. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 343–439

    Google Scholar 

  • Iwasaki K, Sato M (1984a) Inhibitory effects of some heavy metal ions on taste nerve responses in mice. Jpn J Physiol 34:907–918

    PubMed  CAS  Google Scholar 

  • Iwasaki K, Sato M (1984b) Neural and behavioral responses to taste stimuli in the mouse. Physiol Behav 32:803–807

    PubMed  CAS  Google Scholar 

  • Jakinovich W (1981) Stimulation of the gerbil gustatory receptors by artificial sweeteners. Brain Res 210:69–81

    PubMed  CAS  Google Scholar 

  • Jakinovich W (1982) Taste aversion to sugars by the gerbil. Physiol Behav 28:1065–1071

    PubMed  Google Scholar 

  • Jakinowich W Jr (1983) Methyl 4, 6-dichloro-4, 6-dideoxy-α-D-galactopyranoside: an inhibitor of sweet taste responses in gerbils. Science 219:408–410

    Google Scholar 

  • Kadowaki H, Sasaki H, Yamada H, Hiji Y (1979) Analysis of the unique protein obtained from fungiform or circumvallate papillae of man, monkey and dog. In: Funakoshi M (ed) Taste and smell XIII. GIFU, Japan, pp 92–94

    Google Scholar 

  • Kalmus H (1971) Genetics of taste. In: Beidler LM (ed) Taste. Handbook of sensory physiology, vol 4. Springer, Berlin Heidelberg New York, pp 165–179

    Google Scholar 

  • Kang R, Herman D, Macgillis M, Zarzecki P (1985) Convergence of sensory inputs in somatosensory cortex: interactions from separate afferent sources. Exp Brain Res 57:271–278

    PubMed  CAS  Google Scholar 

  • Kashiwagura T, Kamo N, Kurihara K, Kobatake Y (1976) Phasic and tonic components of gustatory responses in the frog. Am J Physiol 231:1097–1104

    PubMed  CAS  Google Scholar 

  • Kashiwagura T, Kamo N, Kurihara K, Kobatake Y (1977) Responses of the frog gustatory receptors to various odorants. Comp Biochem Physiol [C] 56:105–108

    CAS  Google Scholar 

  • Kemble ED, Schwartzbaum JS (1969) Reactivity of taste properties of solutions following amygdaloid lesions. Physiol Behav 4:981–985

    Google Scholar 

  • Kennedy LM, Halpern BP (1980a) Fly chemoreceptors: a model for the taste modifier ziziphin. Physiol Behav 24:135–143

    PubMed  CAS  Google Scholar 

  • Kennedy LM, Halpern BP (1980b) Extraction, purification and characterization of a sweetness-modifying component from Ziziphus jujuba. Chem Senses 5:1379–1384

    Google Scholar 

  • Kennedy LM, Sturckow B, Waller FJ (1975) Effect of gymnemic acid on single taste hairs of the housefly Musca domestica. Physiol Behav 14:755–765

    PubMed  CAS  Google Scholar 

  • Kiefer SW, Leach LR, Braun JJ (1984) Taste agnosia following gustatory neocortex ablation: dissociation from odor and generality across taste qualities. Behav Neurosci 98(4):590–608

    PubMed  CAS  Google Scholar 

  • Kier LB (1972) A molecular theory of sweet taste. J Pharm Sci 61 (9):1343–1397

    Google Scholar 

  • Kiesow F (1898) Expériences gustatives sur diverses papilles isolément excitées. Arch Ital Biol 30:399–425

    Google Scholar 

  • Kimura K, Beidler LM (1961) Microelectrode study of taste receptors of rat and hamster. J Cell Comp Physiol 58:131–139

    PubMed  CAS  Google Scholar 

  • Kitada Y (1984) Two different receptor sites for Ca2+ and Na+ in frog taste responses. Neurosci Lett 47:63–68

    PubMed  CAS  Google Scholar 

  • Köhler W (1930) Gestalt Psychology. Gallimard, Paris (1964)

    Google Scholar 

  • Koyama N, Kurihara K (1971) Do unique proteins exist in taste buds? J Gen Physiol 57:297–302

    PubMed  CAS  Google Scholar 

  • Kroeze JHA (1979) Masking and adaptation of sugar sweeteness intensity. Physiol Behav 22:347–351

    PubMed  CAS  Google Scholar 

  • Kroeze JHA (1982a) After repetitious sucrose stimulation saltiness suppression in NaCl-sucrose mixtures is diminished: implications for a central mixture suppression mechanism. Chem Senses 7 (1):81–92

    CAS  Google Scholar 

  • Kroeze JHA (1982b) The influence of relative frequence of pure and mixed stimuli on mixture suppression in taste. Percept Psychophys 31:276–278

    PubMed  CAS  Google Scholar 

  • Kroeze JHA (1983) Successive contrast cannot explain suppression release after repetitious exposure to one of the components of a taste mixture. Chem Senses 8 (2):211–223

    Google Scholar 

  • Kubota T, Kubo I (1969) Bitterness and chemical structure. Nature 233:97–99

    Google Scholar 

  • Kuznicki JT (1978) Taste profiles from simple human taste papillae. Percept Mot Skills 47:279–286

    PubMed  CAS  Google Scholar 

  • Landgren S (1957) Convergence of tactile, thermal, gustatory impulses on single cortical cells. Acta Physiol Scand 40:210–221

    PubMed  CAS  Google Scholar 

  • Lasiter PS (1982) Cortical substrates of taste aversion learning: direct amygdaloid projections to the gustatory neocortex do not mediate conditioned taste aversion learning. Physiol Psychol 10 (4):377–383

    Google Scholar 

  • Lasiter PS, Glanzman DL (1983) Axon collaterals of pontine taste area neurons project to the posterior ventromedial thalamic nucleus and to the gustatory neocortex. Brain Res 258:299–304

    PubMed  CAS  Google Scholar 

  • Lasiter PS, Glanzman DL, Mensah PA (1982) Direct connectivity between pontine taste areas and gustatory neocortex in rat. Brain Res 234:111–121

    PubMed  CAS  Google Scholar 

  • Lawless H (1980) A comparison of different methods used to assess sensitivity to the taste of phenylthiocarbamide (PTC). Chem Senses 5 (3):247–256

    CAS  Google Scholar 

  • Lawless HT, Stevens DA (1983) Cross adaptation of sucrose and intensive sweeteners. Chem Senses 7 (3–4):309–315

    CAS  Google Scholar 

  • Lawless H, Stevens DA (1984) Effects of oral chemical irritation on taste. Physiol Behav 32:995–998

    PubMed  CAS  Google Scholar 

  • Lush IE (1981) The genetics of tasting in mice. I. Sucrose octaacetate. Genet Res 38:93–95

    PubMed  CAS  Google Scholar 

  • Lush IE (1982) The genetics of tasting in mice. II. Strychnine. Chem Senses 7 (1):93–98

    CAS  Google Scholar 

  • Maes FW (1984) A neural coding model for sensory intensity discrimination, to be applied to gustation. J Comp Physiol [A] 155:263–270

    Google Scholar 

  • Maes FW, Erickson RP (1984) Gustatory intensity discrimination in rat NTS: a tool for the evaluation of neural coding theories. J Comp Physiol [A] 155:271–282

    Google Scholar 

  • Maga JA (1983) Flavor potentiators. CRC Crit Rev Food Sci Nutr 18 (3):231–312

    CAS  Google Scholar 

  • Makous W, Nord S, Oakley B, Pfaffmann C (1963) The gustatory relay in the medulla. In: Zotterman Y (ed) Olfaction and taste I. Macmillan, New York

    Google Scholar 

  • Marks LE (1978) The unity of the senses. Interrelations among the modalities. Academic, New York

    Google Scholar 

  • Marui T, Harada S, Kasahara Y (1983a) Gustatory specificity for amino acids in the facial taste system of the carp, Cyprinus carpio L. J Comp Physiol 153:299–308

    CAS  Google Scholar 

  • Marui T, Evans RE, Zielinski B, Hara TJ (1983b) Gustatory responses of the rainbow trout (Salmo gairdneri) palate to amino acids and derivatives. J Comp Physiol 153:423–433

    Google Scholar 

  • Matsuo R, Kusano K (1984) Lateral hypothalamic modulation of the gustatory-salivary reflex in rats. J Neurosci 4 (5):1208–1216

    PubMed  CAS  Google Scholar 

  • Matsuo R, Shimizu N, Kusano K (1984) Lateral hypothalamic modulation of oral sensory afferent activity in nucleus tractus solitarius neurons of rats. J Neurosci 4 (5):1201–1207

    PubMed  CAS  Google Scholar 

  • McBride RL (1984) The sweetness of binary mixtures of sucrose, fructose, and glucose. In: Proceedings of the 6th annual meeting of the association for chemoreception sciences. Sarasota (Abstract)

    Google Scholar 

  • McBurney DH (1972) Gustatory cross adaptation between sweet-tasting compounds. Percept Psychophys 11:225–227

    Google Scholar 

  • McBurney DH, Gent JF (1978) Taste of methyl alpha-D-mannopyranoside: effects of cross adaptation and Gymnema sylvestre. Chem Senses Flavour 3 (1):945–950

    Google Scholar 

  • McBurney DH, Bartoshuk LM (1973) Interactions between stimuli with different taste qualities. Physiol Behav 10:101–106

    Google Scholar 

  • McBurney DH, Smith DV, Shick TR (1972) Gustatory cross adaptation: sourness and bitterness. Percept Psychophys 11 (3):228–232

    Google Scholar 

  • McBurney DH, Collings VB, Glanz LM (1973) Temperature dependence of human taste responses. Physiol Behav 11:89–94

    PubMed  CAS  Google Scholar 

  • McCutcheon NB, Saunders J (1972) Human taste papilla stimulation: stability of quality judgements over time. Science 175:214–216

    PubMed  CAS  Google Scholar 

  • Mehren MJ, Church DC (1976) Influence of taste-modifiers on taste responses to aminoacids. Anim Product 22:255–260

    Google Scholar 

  • Meiselman HL, Halpern BP (1970) Effects of Gymnema sylvestre on complex tastes elicited by amino acids and sucrose. Physiol Behav 5:1379–1384

    PubMed  CAS  Google Scholar 

  • Meiselman HL, Bose HE, Nykvist WE (1972) Effect of flow rate on tase intensity responses in humans. Physiol Behav 9:35–38

    PubMed  CAS  Google Scholar 

  • Meiselman HL, Halpern BP, Dateo GP (1976) Reduction of sweetness judgments by extracts from the leaves of Ziziphus jujuba. Physiol Behav 17:313–337

    PubMed  CAS  Google Scholar 

  • Miller IJ Jr (1971) Peripheral interactions among single papilla inputs to gustatory nerve fibres. J Gen Physiol 57:1–25

    PubMed  CAS  Google Scholar 

  • Miller IJ Jr (1974) Branched chorda tympani neurons and interactions among taste receptors. J Comp Neurol 158 (2):155–166

    PubMed  Google Scholar 

  • Miller IJ Jr (1977) Gustatory receptors of the palate. In: Sato M, Takagi S, Oomura Y (eds) Food intake and chemical senses. Japan Scientific Societies Press, Tokyo, pp 173–185

    Google Scholar 

  • Miller IJ Jr, Spangler KM (1982) Taste bud distribution and innervation on the palate of the rat. Chem Senses 7 (1):99–108

    Google Scholar 

  • Mistretta CM (1972): A quantitative analysis of rat chorda tympani fiber discharge patterns. In: Schneider D (ed) Olfaction and taste IV. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 294–300

    Google Scholar 

  • Miyake M, Kamo N, Kurihara K, Kobatake Y (1976) Physicochemical studies of taste reception: suppressive effect of salts on sugar response of the frog. Biochim Biophys Acta 436:856–862

    PubMed  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    PubMed  CAS  Google Scholar 

  • Mooser G (1980) Sodium and potassium salt stimulation of taste receptor cells: an allosteric model. Proc Nat Acad Sci, USA 77 (3):1686–1690

    CAS  Google Scholar 

  • Morrison GR, Jessup A (1977) A dual taste of saccharin in the rat. Chem Senses Flavour 2:395–400

    CAS  Google Scholar 

  • Moskowitz HR (1973) Effects of solution temperature on taste intensity in humans. Physiol Behav 10:289–292

    PubMed  CAS  Google Scholar 

  • Mozell MM, Smith BP, Smith PE, Sullivan RL, Swender P (1969) Nasal chemoreception in flavor identification. Arch Otolaryngol 90:131–137

    Google Scholar 

  • Murphy C, Cain WS (1980) Taste and olfaction: independence vs interaction. Physiol Behav 24:601–605

    PubMed  CAS  Google Scholar 

  • Murphy C, Cardello AV, Brand JG (1981) Tastes of fifteen halide salts following water and NaCl: anion and cation effects. Physiol Behav 26:1083–1095

    PubMed  CAS  Google Scholar 

  • Nachman M, Ashe JA (1974) Effects of basolateral amygdala lesions on neophobia, learned taste aversions and sodium appetite in rats. J Comp Physiol Psychol 87:622–643

    PubMed  CAS  Google Scholar 

  • Nagai T, Ueda K (1981) Stochastic properties of gustatory impulse discharges in rat chorda tympani fibers. J Neurophysiol 45 (3):574–592

    PubMed  CAS  Google Scholar 

  • Nagy JI, Goedert M, Hunt SP, Bond A (1982) The nature of the substance P-containing nerve fibres in taste papillae of the rat tongue. Neuroscience 7:3137–3151

    PubMed  CAS  Google Scholar 

  • Narahashi Y (1970) Pronase. In: Perlmann GE, Lorrand L (eds) Methods in enzymology, XIX. Academic, New York, pp 651–664

    Google Scholar 

  • Nilsson B (1979) Taste acuity of the human palate III. Studies with taste solutions on subjects in different age groups. Acta Odontol Scand 37:235–252

    PubMed  CAS  Google Scholar 

  • Ninomiya Y, Funakoshi M (1982a) Relationships between spontaneous discharge rates and taste responses of the dog thalamic neurons. Brain Res 242:67–76

    PubMed  CAS  Google Scholar 

  • Ninomiya Y, Funakoshi M (1982b) Responsiveness of dog thalamic neurons to taste stimulation of various tongue regions. Physiol Behav 29:741–745

    PubMed  CAS  Google Scholar 

  • Ninomiya Y, Mizukoshi T, Higashi T, Katsukawa H, Funakoshi M (1984) Gustatory neural responses in three different strains of mice. Brain Res 302:305–314

    PubMed  CAS  Google Scholar 

  • Noma A, Hiji Y (1972) Effects of modifiers on taste responses in the rat chorda tympani. Jpn J Physiol 22:393–402

    PubMed  CAS  Google Scholar 

  • Noma A, Sato M, Tsuzuki Y (1974) Taste effectiveness of anomers of sugars and glycosides as revealed from hamster taste responses. Comp Biochem Physiol A 48:249–262

    PubMed  CAS  Google Scholar 

  • Nomoto M, Naharashi Y, Murakami M (1960) A proteolytic enzyme of Streptomyces griseus. VI. Hydrolysis of protein by Streptomyces griseus protease. J Biochem (Tokyo) 48 (4):593–602

    CAS  Google Scholar 

  • Nomura S, Mizuno N, Itoh K, Matsuda K, Sugimoto T, Nakamura Y (1979) Localization of parabrachial nucleus neurons projecting to the thalamus or the amygdala in the cat using horseradish Peroxydase. Exp Neurol 64:375–385

    PubMed  CAS  Google Scholar 

  • Norgren R (1970) Gustatory responses in the hypothalamus. Brain Res 21:63–77

    PubMed  CAS  Google Scholar 

  • Norgren R (1971) Taste pathways in rat brain stem. Science 173:1136–1139

    PubMed  CAS  Google Scholar 

  • Norgren R (1976) Taste pathways to hypothalamus and amygdala. J Comp Neurol 166:17–30

    PubMed  CAS  Google Scholar 

  • Norgren R (1977) A synopsis of gustatory neuroanatomy. In: Le Magnen J, Mac Leod P (eds) Olfaction and taste VI. I R L London, pp 225–232

    Google Scholar 

  • Norgren R (1978) Projections from the nucleus of the solitary tract in the rat. Neuroscience 3:207–218

    PubMed  CAS  Google Scholar 

  • Norgren R (1981) The central organization of the gustatory and visceral afferent systems in the nucleus of the solitary tract. In: Katsuki Y, Norgren R, Sato M (eds) Brain mechanisms of sensation. John Wiley, New York, pp 143–160

    Google Scholar 

  • Norgren R, Leonard CM (1971a) Taste pathways in rat brainstem. Science 173:1136–1139

    PubMed  CAS  Google Scholar 

  • Norgren R, Leonard CM (1971b) Ascending central gustatory pathways. J Comp Neurol 150:217–238

    Google Scholar 

  • Norgren R, Wolf G (1975) Projections of thalamic gustatory and lingual areas in the rat. Brain Res 92:123–129

    PubMed  CAS  Google Scholar 

  • Nowlis GH, Frank ME, Pfaffmann C (1980) Specificity of acquired aversions to taste qualities in hamsters and rats. J Comp Physiol Psychol 94:932–942

    PubMed  CAS  Google Scholar 

  • O’Mahony M, Buteau L (1982) Taste mixtures: can the components be readily identified? IRCS Med Sci 10:9–10

    Google Scholar 

  • O’Mahony M, Atassi-Sheldon S, Rothman L, Murphy-Ellison T (1983) Relative singularity/mixedness judgements for selected taste stimuli. Physiol Behav 31:749–755

    PubMed  Google Scholar 

  • Oakley B (1967) Altered temperature and taste responses from cross regenerated sensory nerves in the rat’s tongue. J Physiol 188:353–371

    PubMed  CAS  Google Scholar 

  • Oakley B (1970) Reformation of taste buds by crossed sensory nerves in the rat’s tongue. Acta Physiol Scand 79:88–94

    PubMed  CAS  Google Scholar 

  • Oakley B (1974) On the specification of taste neurons in the rat tongue. Brain Res 75:85–96

    PubMed  CAS  Google Scholar 

  • Oakley B (1975) Receptive fields of cat taste fibers. Chem Senses Flavour 1:431–442

    CAS  Google Scholar 

  • Oakley B, Chu JS, Jones LB (1981) Axonal transport maintains taste responses. Brain Res 221:289–298

    PubMed  CAS  Google Scholar 

  • Oakley B, Keppel E, Hugues SE (1984) Trophic capacity of experimentally lengthened gustatory axons. Dev Brain Res 16:195–201

    Google Scholar 

  • Ogawa H, Hayama T (1984) Receptive fields of solitario-parabrachial relay neurons responsive to natural stimulation of the oral cavity in rats. Exp Brain Res 54:359–366

    PubMed  CAS  Google Scholar 

  • Ogawa H, Kaisaku J (1980) Projection to parabrachial nucleus of solitary tract nucleus neurons activated by tongue afferents in rats. Jpn J Physiol 30:659–663

    PubMed  CAS  Google Scholar 

  • Ogawa H, Sato M, Yamashita S (1968) Multiple sensitivity of chorda tympani fibers in the rat and hamster to gustatory and thermal stimuli. J Physiol 199:223–240

    PubMed  CAS  Google Scholar 

  • Ogawa H, Sato M, Yamashita S (1969) Gustatory impulse discharges in response to saccharin in rats and hamsters. J Physiol (Lond) 204:311–329

    CAS  Google Scholar 

  • Ogawa H, Sato M, Yamashita S (1973) Variability in impulse discharges in rat chorda tympani fibers in response to repeated gustatory stimulations. Physiol Behav 11:469–479

    PubMed  CAS  Google Scholar 

  • Ogawa H, Yamashita S, Sato M (1974) Variation in gustatory nerve fiber discharge pattern with change in stimulus concentration and quality. J Neurophysiol 37 (3):443–457

    PubMed  CAS  Google Scholar 

  • Ogawa H, Imoto T, Hayama T (1980) Taste relay neurons in the solitary tract nucleus of the rats. Neurosci Lett 18:295–299

    PubMed  CAS  Google Scholar 

  • Ogawa H, Hayama T, Ito S (1981) Receptive fields of neurons in the brain stem taste nuclei of rats. In: Hiji Y (ed) Proceedings of the 15th Japanese symposium on taste and smell. Tottori University, Japan, pp 137–140

    Google Scholar 

  • Ogawa H, Hayama T, Ito S (1982) Convergence of input from tongue and palate to the parabrachial nucleus neurons of rats. Neurosci Lett 28:9–14

    PubMed  CAS  Google Scholar 

  • Ogawa H, Imoto T, Hayama T (1984) Responsiveness of solitario-parabrachial relay neurons to taste and mechanical stimulation applied to the oral cavity in rats. Exp Brain Res 54:349–358

    PubMed  CAS  Google Scholar 

  • Ostretsova IB, Safarian EK, Etingof RN (1975) On the presence and localisation of proteins binding glucose in the tongue. Proc Acad Sci USSR 233:1484–1487

    Google Scholar 

  • Ozeki M, Sato M (1972) Responses of gustatory cells in the tongue of rat to stimuli representing the four taste qualities. Comp Biochem Physiol [A] 41:391–407

    CAS  Google Scholar 

  • Pangborn RM, Chrisp RB, Bertolero LM (1970) Gustatory, salivary, and oral thermal responses to solution of sodium chloride at four temperatures. Percept Psychophys 8:69–75

    Google Scholar 

  • Paulus K, Reisch AM (1980) The influence of temperature on the threshold values of primary tastes. Chem Senses 5 (1):11–21

    CAS  Google Scholar 

  • Perrotto RS, Scott TS (1976) Gustatory neural coding in the pons. Brain Res 110:283–300

    PubMed  CAS  Google Scholar 

  • Pfaffmann C (1939) Specific gustatory impulses. J Physiol 96:41P–42P

    Google Scholar 

  • Pfaffmann C (1941) Gustatory afferent impulses. J Cell Comp Physiol 17:243–258

    Google Scholar 

  • Pfaffmann C (1955) Gustatory nerve impulses in rat, cat and rabbit. J Neurophysiol 18:429–440

    PubMed  CAS  Google Scholar 

  • Pfaffmann C (1959) The sense of taste. In: Field IJ, Magoun HW, Hall VE (eds) (Handbook of physiology, sect 1) Neurophysiology, vol 1. American Physiological Society, Washington, pp 507–534

    Google Scholar 

  • Pfaffmann, C (1974) Specificity of the sweet receptors of the squirrel monkey. Chem Senses Flavour 1 (l):61–67

    Google Scholar 

  • Pfaffmann C, Norgren R, Grill HJ (1977) Sensory affect and motivation. Ann N Y Acad Sci 290:18–34

    PubMed  CAS  Google Scholar 

  • Pfaffmann C, Frank M, Norgren R (1979) Neural mechanisms and behavioral aspects of taste. Ann Rev Psychol 30:283–325

    CAS  Google Scholar 

  • Pritchard TC, Scott TR (1982) Amino acids as taste stimuli. II Quality coding. Brain Res 253:93–104

    PubMed  CAS  Google Scholar 

  • Rifkin B, Bartoshuk LM (1980) Taste synergism between monosodium glutamate and disodium 5′ guanylate. Physiol Behav 24:1169–1172

    PubMed  CAS  Google Scholar 

  • Riskey DR, Desor JA, Vellucci D (1982) Effects of gymnemic acid concentration and time since exposure on intensity of simple tastes: a test of the biphasic model for the action of gymnemic acid. Chem Senses 7 (2):143–151

    CAS  Google Scholar 

  • Rolls ET, Rolls BJ (1977) Activity of neurones in sensory, hypothalamic and motor areas during feeding in the monkey. In: Katsuki Y, Sato M, Takagi S, Oomura Y (eds) Food intake and chemical senses. Jpn Sci Soc Tokyo, pp 525–549

    Google Scholar 

  • Rolls ET, Burton MJ, Mora F (1976) Hypothalamic neuronal responses associated with the sight of food. Brain Res 111:53–66

    PubMed  CAS  Google Scholar 

  • Sandick B, Cardello AV (1981) Taste profiles from single circumvallate papillae: comparison with fungiform profiles. Chem Senses 6 (3):197–214

    Google Scholar 

  • Sato M (1963) The effect of temperature change on the response of taste receptors. In: Zotterman Y (ed) Olfaction and taste I. Pergamon Oxford, pp 151–164

    Google Scholar 

  • Sato M, Ogawa H, Yamashita S (1975) Response properties of macaque monkey chorda tympani fibers. J Gen Physiol 66:781–810

    PubMed  CAS  Google Scholar 

  • Sato M, Hiji Y, Ito H (1977a) Taste discrimination in the monkey. In: Le Magnen J. Mac Leod P (eds) Olfaction and taste VI. I R L, London, pp 233–240

    Google Scholar 

  • Sato M, Hiji Y, Ito H, Imoto T (1977b) In: Kare MR, Maller O (eds) Chemical senses and nutrition. Academic, New York, pp 327–341

    Google Scholar 

  • Sato M, Hiji Y, Ito H, Imoto T, Saku C (1977c) Properties of sweet taste receptors in macaque monkeys. In: Katsuki Y, Sato M, Takagi SF, Oomura Y (eds) Food intake and chemical senses. Jpn Sci Soc, Tokyo, pp 187–199

    Google Scholar 

  • Sato T (1971) Site of gustatory neural adaptation. Brain Res 34:385–388

    PubMed  CAS  Google Scholar 

  • Sato T (1977) An initial phasic depolarization exists in the receptor potential of taste cells. Experientia 33:1165–1167

    PubMed  CAS  Google Scholar 

  • Sato T (1980) Recent advances in the physiology of cells. Prog Neurobiol 14:25–67

    PubMed  CAS  Google Scholar 

  • Sato T, Beidler LM (1975) Membrane resistance change of the frog taste cells in response to water and NaCl. J Gen Physiol 66:735–763

    PubMed  CAS  Google Scholar 

  • Schiffman SS, Erickson RP (1971) A psychophysic model for gustatory quality. Physiol Behav 7:617–633

    PubMed  CAS  Google Scholar 

  • Schiffman SS, Erickson RP (1980) The issue of primary tastes versus a taste continuum. Neurosci Behav Rev 4:109–117

    CAS  Google Scholar 

  • Schiffman SS, Reilly DA, Clark TB (1979) Qualitative differences among sweeteners. Physiol Behav 23:1–9

    PubMed  CAS  Google Scholar 

  • Schiffman SS, McElroy AE, Erickson RP (1980) The range of taste quality of sodium salts. Physiol Behav 24:217–224

    PubMed  CAS  Google Scholar 

  • Schiffman SS, Cahn H, Lindley MG (1981) Multiple receptor sites mediate sweetness: evidence from cross adaptation. Pharmacol Biochem Behav 15:377–388

    PubMed  CAS  Google Scholar 

  • Schwartzbaum JS, Block CH (1981) Interrelations between parabrachial pons and ventral forebrain of rabbits in taste-mediated functions. In: Ben-Ari Y (ed) The amygdaloid complex, INSERM symposium no 20. Elsevier, North-Holland Biomedical, Amsterdam, pp 367–382

    Google Scholar 

  • Schwartzbaum JS, DiLorenzo PM (1982) Gustatory functions of the nucleus tractus solitarius in the rabbit. Brain Res Bull 8:285–292

    PubMed  CAS  Google Scholar 

  • Scott TR, Chang F-CT (1984) The state of gustatory neural coding. Chem Senses 8 (3):297–314

    Google Scholar 

  • Scott TR, Erickson RP (1971) Synaptic processing of taste quality information in the thalamus of the rat. J Neurophysiol 34 (5):868–884

    PubMed  CAS  Google Scholar 

  • Scott TR, Perrotto RS (1980) Intensity coding in pontine taste area: gustatory information is processed similarly throughout rat’s brainstem. J Neurophysiol 44 (4):739–750

    PubMed  CAS  Google Scholar 

  • Scott TR, Pritchard TC (1982) A neurobehavioral analysis of 1-aminoacids as taste stimuli. Perfumer Flavorist 7 (1):1–25

    CAS  Google Scholar 

  • Scott TR, Yalowitz MS (1978) Thalamic taste responses to changing stimulus concentration. Chem Senses Flavour 3 (2):167–175

    CAS  Google Scholar 

  • Shallenberger RS, Acree TE (1967) Molecular theory of sweet taste. Nature 216:480–482

    PubMed  CAS  Google Scholar 

  • Shallenberger RS, Acree TE (1971) Chemical structure of compounds and their sweet and bitter taste. In: Beidler LM (ed) Handbook of sensory physiology, vol 4. Springer, Berlin Heidelberg New York, pp 221–273

    Google Scholar 

  • Shimazaki K, Sato M (1981) Binding of sweeteners to a protein fraction from monkey taste papillae. In: Hiji Y (ed) Proceedings of the 15th symposium on taste and smell. Osaka University, Japan, pp 202–205

    Google Scholar 

  • Shimazaki K, Sato M, Takegami T (1981) Binding of 35 S saccharin to a protein fraction of rat tongue epithelia. Biochim Biophys Acta 677:331–338

    PubMed  CAS  Google Scholar 

  • Shipley MT, Geinisman Y (1984) Anatomical evidence for convergence of olfactory, gustatory, and visceral afferent pathways in mouse cerebral cortex. Brain Res Bull 12:221–226

    PubMed  CAS  Google Scholar 

  • Sloan HE, Hugues SE, Oakley B (1983) Chronic impairment of axonal transport eliminates taste responses and taste buds. J Neurosci 3 (1):117–123

    PubMed  CAS  Google Scholar 

  • Smith DV, Bealer SL (1976) Recovery of excitability after gustatory adaptation: effects of stimulus intensity. Sensory Processes 1:99–108

    PubMed  Google Scholar 

  • Smith DV, Frank M (1972) Cross adaptation between salts in the chorda tympani nerve of the rat. Physiol Behav 8:213–220

    PubMed  CAS  Google Scholar 

  • Smith DV, Steadman JW, Rhodine CN (1975) An analysis of the time course of gustatory neural adaptation in the rat. Am J Physiol 229 (4):1134–1140

    PubMed  CAS  Google Scholar 

  • Smith DV, Bealer SL, Van Buskirk RL (1978) Adaptation and recovery of the rat chorda tympani response to NaCl. Physiol Behav 20:629–636

    PubMed  CAS  Google Scholar 

  • Smith DV, Travers JB, Van Buskirk RL (1979) Brainstem correlates of gustatory similarity in the hamster. Brain Res Bull 4:359–372

    PubMed  CAS  Google Scholar 

  • Smith DV, van Buskirk RL, Travers JB, Bieber SL (1983a) Gustatory neuron types in hamster brain stem. J Neurophysiol 50 (2):522–540

    PubMed  CAS  Google Scholar 

  • Smith DV, van Buskirk RL, Travers JB, Bieber SL (1983b) Coding of taste stimuli by hamster brain stem neurons. J Neurophysiol 50 (2):541–558

    PubMed  CAS  Google Scholar 

  • Smith VV, Halpern BP (1983) Selective suppression of judged sweetness by ziziphins. Physiol Behav 30:867–874

    PubMed  CAS  Google Scholar 

  • Steiner JE (1973) The gustofacial response: observation on normal and anencephalic newborn infants. In: Bosma JF (ed) IVth Symposium on oral sensation and perception. DHEW, Bethesda, pp 254–278

    Google Scholar 

  • Tateda H (1967) Sugar receptor and alpha-aminoacids in the rat. In: Hayashi T (ed) Olfaction and taste II. Pergamon, Oxford, pp 383–397

    Google Scholar 

  • Tonosaki K, Funakoshi M (1984a) Intracellular taste cell responses of mouse. Comp Biochem Physiol 78A (4):651–656

    Google Scholar 

  • Tonosaki K, Funakoshi M (1984b) The mouse taste cell response to five sugar stimuli. Comp Biochem Physiol 79A (4):625–630

    Google Scholar 

  • Travers JB, Smith DV (1979) Gustatory sensitivities in neurons of the hamster nucleus tractus solitarius. Sensory Processes 3:1–26

    PubMed  CAS  Google Scholar 

  • Travers SP, Smith DV (1984) Responsiveness of neurons in the hamster parabrachial nuclei to taste mixtures. J Gen Physiol 84:221–250

    PubMed  CAS  Google Scholar 

  • Van Buskirk RL, Smith DV (1981) Taste sensitivity of hamster parabrachial pontine neurons. J Neurophysiol 45 (1):144–171

    PubMed  Google Scholar 

  • Van Buskirk RL, Erickson RP (1977) Odorant responses in taste neurons of the rat NTS. Brain Res 135:287–303

    PubMed  Google Scholar 

  • Von Bekesy G (1965) The effect of adaptation on the taste threshold observed with a semiautomatic gustometer. J Gen Physiol 48:81–88

    Google Scholar 

  • Von Bekesy G (1966) Taste theories and the chemical stimulation of single papillae. J Appl Physiol 21:1–9

    Google Scholar 

  • Warren RM, Pfaffmann C (1959) Suppression of sweet sensitivity by potassium gymnemate. J Appl Physiol 14 (l):40–42

    PubMed  CAS  Google Scholar 

  • West CHK, Bernard RA (1978) Intracellular characteristics and responses of taste buds and lingual cells of the mudpuppy. J Gen Physiol 72:305–326

    PubMed  CAS  Google Scholar 

  • Whitehead MC, Frank ME (1983) Anatomy of the gustatory system in the hamster: central projections of the chorda tympani and the lingual nerve. J Comp Physiol 220:378–395

    CAS  Google Scholar 

  • Wieser H, Belitz HD (1975) Zusammenhänge zwischen Struktur und Bittergeschmack bei Aminosäuren und Peptiden I. Aminosäuren und verwandte Verbindungen. Z Lebensm Unters Forsch 159:65–72

    PubMed  CAS  Google Scholar 

  • Woolston DC, Erickson RP (1979) Concept of neuron types in gustation in the rat. J Neurophysiol 42 (5):1390–1409

    PubMed  CAS  Google Scholar 

  • Yackzan KS (1966) Biological effects of Gymnema sylvestre fractions. Ala J Med Sci 3:1–9

    CAS  Google Scholar 

  • Yackzan KS (1969) Biological effects of Gymnema sylvestre fractions II. Electrophysiology. Effect of gymnemic acid on taste receptor response. Ala J Med Sci 6:455–463

    PubMed  CAS  Google Scholar 

  • Yamaguchi S (1967) The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. J Food Sci 32 (14):473–478

    CAS  Google Scholar 

  • Yamaguchi S (1979) The umami taste. In: Boudreau JC (ed) Food and taste chemistry. University of Texas, Houston, pp 33–52

    Google Scholar 

  • Yamaguchi S, Takahashi C (1984) Interactions of monosodium glutamate and sodium chloride on saltiness and palatability of a clear soup. J Food Sci 49 (l):82–85

    Google Scholar 

  • Yamamoto T (1983) Neural mechanisms of taste function. Front Oral Physiol 4:102–130

    Google Scholar 

  • Yamamoto T, Kawamura Y (1971) Inhibitory effect of cupric and zinc ions on sweet taste response in the rat. J Osaka University Dental School 11:99–104

    CAS  Google Scholar 

  • Yamamoto T, Kawamura Y (1972) A model of neural code for taste quality. Physiology Behav 9:559–563

    CAS  Google Scholar 

  • Yamamoto T, Kawamura Y (1975) Dual innervation of the foliate papillae of the rat: an electrophysiological study. Chem Senses Flavor 1:241–244

    Google Scholar 

  • Yamamoto T, Kawamura Y (1974) An off-type response of the chorda tympani nerve in the rat. Physiol Behav 13:239–243

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Kawamura Y (1977) Physiological characteristics of cortical taste area. In: Le Magnen J, Mac Leod P (eds) Olfaction and taste VI. IRL, London, pp 257–264

    Google Scholar 

  • Yamamoto T, Kawamura Y (1984) Gustatory reaction time to various salt solutions in human adults. Physiol Behav 32:49–53

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Matsuo R, Kawamura Y (1980a) Localization of cortical gustatory area in rats and its role in taste discrimination. J Neurophysiol 44 (3):40–45

    Google Scholar 

  • Yamamoto T, Matsuo R, Kawamura Y (1980b) The pontine taste area in the rabbit. Neurosci Lett 16:5–9

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Matsuo R, Kawamura Y (1980c) Corticofugal effects on the activity of thalamic taste cells. Brain Res 193:258–262

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Azuma S, Kawamura Y (1981a) Significance of cortical-amygdalar-hypothalamic connections in retention of conditioned taste aversion in rats. Exp Neurol 74:758–768

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Takahashi T, Kawamura Y (1981b) Access to the cerebral cortex of extralingual taste inputs in the rat. Neurosci Lett 24:129–132

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Yuyama N, Kawamura Y (1981c) Cortical representation of sensory modalities from the tongue in the rat. In: Kawamura Y, Dubner R (eds) Oral-facial sensory and motor functions. Quintessence, Tokyo

    Google Scholar 

  • Yamamoto T, Yuyama N, Kawamura Y (1981d) Cortical neurons responding to tactile, thermal and taste stimulation of the rat’s tongue. Brain Res 221:202–206

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Yuyama N, Kawamura Y (1981e) Central processing of taste perception. In: Katsuki Y, Sato M, Norgren R (eds) Brain mechanisms of sensation. John Wiley, New York

    Google Scholar 

  • Yamamoto T, Kato T, Kawamura Y, Yoshida M (1983) Gustatory reaction time to various sweeteners. In: Kasahara Y et al. (eds) Proceedings of the 17th Japanese symposium on taste and smell. Kagoshima, 1983. Osaka University, p 80

    Google Scholar 

  • Yamamoto T, Azuma S, Kawamura Y (1984a) Functional relations between the cortical gustatory area and the amygdala: electrophysiological and behavioral studies in the rat. Exp Brain Res 56:23–31

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Matsuo R, Kawamura Y (1984b) Reaction time to taste stimuli applied to one side of the human tongue. In: Ueda K (ed) Proceedings of the 18th Japanese symposium on taste and smell. Tokyo. Osaka University, p 172

    Google Scholar 

  • Yamamoto T, Yuyama N, Kato T, Kawamura Y (1984c) Gustatory responses of cortical neurons in rats. I. Response characteristics. J Neurophysiol 51 (4):616–635

    PubMed  CAS  Google Scholar 

  • Yamashita S, Sato M (1965) The effect of temperature on gustatory response of rats. J Cell Comp Physiol 66:1–18

    CAS  Google Scholar 

  • Yamashita S, Ogawa H, Kiyohara T, Sato M (1970) Modification by temperature change of gustatory impulse discharges in chorda tympani fibres of rats. Jpn J Physiol 20:348–363

    PubMed  CAS  Google Scholar 

  • Yoshida M, Saito S (1969) Multidimensional scaling of the taste of aminoacids. Jpn Psychol Res 11 (4):149–166

    Google Scholar 

  • Yoshii K, Kobatake Y, Kurihara K (1981) Selective enhancement and suppression of frog gustatory responses to aminoacids. J Gen Physiol 77:373–385

    PubMed  CAS  Google Scholar 

  • Zawalich WS (1973) Depression of gustatory sweet response by alloxan. Comp Biochem Physiol [A] 44: 903–909

    CAS  Google Scholar 

  • Zotterman Y (1935) Action potentials in the glossopharyngeal nerve and in the chorda tympani. Skand Arch Physiol 72:73–77

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Faurion, A. (1987). Physiology of the Sweet Taste. In: Autrum, H., Ottoson, D., Perl, E.R., Schmidt, R.F., Shimazu, H., Willis, W.D. (eds) Progress in Sensory Physiology. Progress in Sensory Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71060-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71060-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71062-9

  • Online ISBN: 978-3-642-71060-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics