The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences

  • W. Skrandies
Part of the Progress in Sensory Physiology book series (PHYSIOLOGY, volume 8)


Basic sensory functions depend on physical stimulus characteristics, physiological perceptual mechanisms, the state of the nervous system at the time of stimulus arrival, and also on the exact location of the stimulus on the receptor plane. In the somatosensory system, for example, the spatial resolution for mechanical stimuli differs according to whether they are applied to the fingertips or to the arm area, and the visual system shows pronounced functional differences between the center and the periphery of the retina, related to the different local packing densities of the photoreceptors and their different connections to the retinal ganglion cells.


Contrast Sensitivity Retinal Location Retinal Area Vertical Meridian Contrast Sensitivity Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi-Usami E, Lehmann D (1983) Monocular and binocular evoked average potential field topography: upper and lower hemiretSnal stimuli. Exp Brain Res 50:341–346PubMedGoogle Scholar
  2. Aebersold H, Creutzfeldt OD, Kuhnt U and Sanides D (1981) Representation of the visual field in the optic tract and optic chiasm of the cat. Exp Brain Res 42:127–145PubMedGoogle Scholar
  3. Afanador AJ, Andrews CE (1978) Rod and cone contribution to the EOG ratio. Am J Optom 55:101–107Google Scholar
  4. Ali MA, Klyne MA (1985) Vision in vertebrates. Plenum New YorkGoogle Scholar
  5. Alpern M (1972) Eye movements. In: Jameson D, Hurwich LM (eds) Handbook of sensory physiology, vol VII/4. Springer, Berlin Heidelberg New York, pp 304–330Google Scholar
  6. Annis RC, Frost B (1973) Human visual ecology and orientation anisotropics in acuity. Science 182:729–731PubMedGoogle Scholar
  7. Arden GB, Kelsey JH (1962a) Changes produced by light in the standing potential of the human eye. J Physiol 161, 189–204PubMedGoogle Scholar
  8. Arden GB, Kelsey JH (1962b) Some observations on the relationship between the standing potential of the human eye and the bleaching and regeneration of visual purple. J Physiol 161, 205–226PubMedGoogle Scholar
  9. Arden GB, Carter RM, Hogg C, Siegel IM, Margolis S (1979) A gold foil electrode: extending the horizons for clinical electroretinography. Invest Ophthalmol 18, 421–426Google Scholar
  10. Armington JC (1968) The electroretinogram, the visual evoked potential, and the arealuminance relation. Vision Res 1968, 8, 263–276Google Scholar
  11. Armington JC (1974) The electroretinogram. Academic, New YorkGoogle Scholar
  12. Aschoff U (1981) Skotopische und photopische Anteile der Hell- und Dunkelschwingung im Elektrookulogramm. Dev Ophthalmol 4, 149–166PubMedGoogle Scholar
  13. Aubert H, Förster R (1857) Beiträge zur Kenntnis des indirecten Sehens. I. Untersuchungen über den Raumsinn der Retina. Arch Ophthalmol 3, 1–37Google Scholar
  14. Baizer JS, Maguire WM (1983) Double representation of lower visual quadrant in prelunate gyrus of rhesus monkey. Invest Ophthalmol Vis Sci 24, 1436–1439PubMedGoogle Scholar
  15. Bartlett NR, Sticht TG, Pease VP (1968) Effects of wavelength and retinal locus on the reaction time to onset and offset stimulation. J Exp Psychol 78, 699–701PubMedGoogle Scholar
  16. Basier A (1911) Über die Verschmelzung von zwei nacheinander erfolgenden Lichtreizen. Pflügers Arch 143, 245–251Google Scholar
  17. Bennet-Clark HC (1964) The oculomotor response to small target replacements. Optica Acta 11, 301–314PubMedGoogle Scholar
  18. Berger H (1929) Über das Elektrenkephalogramm des Menschen. 1, Mitteilung. Arch Psychiat Nervenkrankh 87, 527–570Google Scholar
  19. Bilge M, Bingle A, Seneviratne KG, Whitteridge D (1967) A map of the visual cortex in the cat. J Physiol 191, 116P–118PPubMedGoogle Scholar
  20. Bishop PO, Kozak W, Vakkur GJ (1962) Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field co-ordinates and optics. J Physiol 163, 466–502PubMedGoogle Scholar
  21. Bjaalie JG (1985) Distribution in areas 18 and 19 of neurons projecting to the pontine nuclei: a quantitative study in the cat with retrograde transport of HRP-WGA. Exp Brain Res 57, 585–597PubMedGoogle Scholar
  22. Bjaalie JG, Brodai P (1983) Distribution in area 17 of neurons projecting to the pontine nuclei: a quantitative study in the cat with retrograde transport of HRP-WGA. J Comp Neurol 221:289–303PubMedGoogle Scholar
  23. Bodis-Wollner I, Diamond SP (1976) The measurement of spatial contrast sensitivity in cases of blurred vision associated with cortical lesions. Brain 99, 695–710PubMedGoogle Scholar
  24. Braddick D, Campbell FW, Atkinson J (1978) Channels in vision: basic aspects. In: Held R, Leibowitz HW, Teuber H-J (eds) Handbook of sensory physiology, vol 8. Springer, Berlin Heidelberg New York, pp 3–38Google Scholar
  25. Breitmeyer B, Julesz B, Kropfl W (1975) Dynamic random-dot stereograms reveal up-down anisotropy and left-right isotropy between cortical hemifields. Science 187, 269–270PubMedGoogle Scholar
  26. Brettel H, Caelli T, Hilz R, Rentschler I (1982) Modelling perceptual distortion: amplitude and phase transmission in the human visual system. Hum Neurobiol 1, 61–67PubMedGoogle Scholar
  27. Brindley G, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196, 479–493PubMedGoogle Scholar
  28. Broca P (1861) Perte de la parole. Romolissement chronique et destruction partielle du lobe anterieur gauche du cerveau. Bull Soc Anthrop (Paris) 219Google Scholar
  29. Brown JL (1965) Flicker and intermittent stimulation. In: Graham CH (ed) Vision and visual perception. Wiley, New York, pp 251–320Google Scholar
  30. Burkhalter A, Felleman DJ, Newsome WT, van Essen DC (1986) Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex. Vision Res 26, 63–80PubMedGoogle Scholar
  31. Campbell FW, Robson JG (1968) Applications of Fourier analysis to the visibility of gratings. J Physiol 197, 551–566PubMedGoogle Scholar
  32. Caton R (1875) The electric currents of the brain. Br Med J 2, 278Google Scholar
  33. Clarke PGH, Whitteridge D (1976) The projection of the retina, including the red area, on to the optic tectum of the pigeon. Q J Exp Physiol 61, 351–358Google Scholar
  34. Cocito L, Favale E, Taraglione A (1977) Asimmetrie funzionali tra emicampo visivo superiore ed inferiore nel soggetto normale. Boll Soc It Biol Sper 53, 629–633Google Scholar
  35. Copenhaver RM, Perry NW (1964) Factors affecting visually evoked cortical potentials such as impaired vision of varying etiology. Invest Ophthalmol 3, 665–675PubMedGoogle Scholar
  36. Creutzfeldt OD (1983) Cortex cerebri. Springer Berlin Heidelberg New YorkGoogle Scholar
  37. Creutzfeldt OD, Kuhnt U (1967) The visual evoked potential: physiological, developmental, and clinical aspects. Electroencephalogr Clin Neurophysiol [Suppl 26]:29–41Google Scholar
  38. Curcio CA, Hendrickson AE, Kalina RE (1985) Topographical distribution of human photoreceptors. Invest Ophthalmol Vis Sci 26 [Suppl]:261Google Scholar
  39. Dawson WW, Maida TM (1984) Relations between the human retinal cone and ganglion cell distribution. Ophthalmologica 188, 216–221PubMedGoogle Scholar
  40. Delius JD, Perchard RJ, Emmerton J (1976) Polarized light discrimination by pigeons and an electroretinographic correlate. J Comp Physiol Psychol 90, 560–571PubMedGoogle Scholar
  41. Dimond SJ, Beaumont JG (1974) Hemisphere function in the human brain. Elek Science, London, p 398Google Scholar
  42. Ditchburn RW (1973) Eye movements and visual perception. Clarendon, OxfordGoogle Scholar
  43. Dodt E (1951) Cone electroretinography by flicker. Nature 168:738PubMedGoogle Scholar
  44. Dodt E (1964) Erregung und Hemmung retinaler Neurone bei intermittierender Belichtung. Doc Ophthalmol 18, 259–274PubMedGoogle Scholar
  45. Dodt E, Baier M (1984) Area-luminance relationship for a constant light peak of the standing potential in the human eye. Ophthalmologica 188, 232–238PubMedGoogle Scholar
  46. Dodt E, Enroth C (1954) Retinal flicker response in cat. Acta Phys Scand 30, 375–390Google Scholar
  47. Donchin E, Ritter W, McCallum WC (1978) Cognitive psychophysiology: the endogenous components of the ERP. In: Callaway E, Tueting P, Koslow SH (eds), Event-related brain potentials in man. Academic, New York, pp 349–411Google Scholar
  48. Dräger UC, Hubel DH (1976) Topography of visual and somatosensory projections to mouse superior colliculus. J Neurophysiol 39, 91–101PubMedGoogle Scholar
  49. Drance SM (1977) The visual field of low tension glaucoma and shock-induced optic neuropathy. Arch Ophthalmol 95, 1359–1361PubMedGoogle Scholar
  50. Drasdo N (1977) The neural representation of visual space. Nature 266, 554–555PubMedGoogle Scholar
  51. Eason RG, White CT, Oden D (1967) Averaged occipital responses to stimulation of sites in the upper and lower halves of the retina. Percept Psychophys 2, 423–425Google Scholar
  52. Ehrlich D (1981) Regional specialization of the chick retina as revealed by the size and density of neurons in the ganglion cell layer. J Comp Neurol 195, 643–657PubMedGoogle Scholar
  53. Elenius V, Aantaa E (1973) Light-induced increase in amplitude of electro-oculogram. Arch Ophthalmol 90, 60–63PubMedGoogle Scholar
  54. Emmerton J (1983a) Functional morphology of the visual system. In: Abs M (ed), Physiology and behaviour of the pigeon, Academic, New York, pp 221–244Google Scholar
  55. Emmerton J (1983b) Vision. In: Abs M (ed), Physiology and behaviour of the pigeon, Academic, New York, pp 245–266Google Scholar
  56. Estevez O, Spekreijse H (1974) Relationship between pattern appearance — disappearance and pattern reversal response. Exp Brain Res 19, 233–238PubMedGoogle Scholar
  57. Flammer J, Drance SM, Fankhausen F, Augustiny L (1984) Differential light threshold in automated static perimetry. Arch Ophthalmol 102, 876–879PubMedGoogle Scholar
  58. Fox SS, O’Brien JH (1965) Duplication of evoked potential waveform by curve of probability of firing of a single cell. Science 147, 888–890PubMedGoogle Scholar
  59. Freeman RB (1964) Figurai after-effects: displacement or contrast. Am J Pyschol 77, 607–613Google Scholar
  60. Freeman WJ (1978) Discussion in E. Donchin: Use of scalp distribution as a dependent variable in event-related potential studies: excerpts of preconference correspondence. In: Otto DA (ed) Multidisciplinary perspectives.., in event-related brain potential research. EPA, Washington, pp 501–510Google Scholar
  61. Gazzaniga MS (1970) The bisected brain. Appleton-Century-Crofts, New YorkGoogle Scholar
  62. Gibson A, Baker J, Mower G, Glickstein M (1978) Corticopontine cells in area 18 of the cat. J Neurophysiol 41, 484–495PubMedGoogle Scholar
  63. Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, BostonGoogle Scholar
  64. Glickstein M, Stein J, King RA (1972) Visual input to the pontine nuclei. Science 178, 1110–1111PubMedGoogle Scholar
  65. Goodale MA (1983) Visually guided, pecking in the pigeon (Columba livia). Brain Behav Evol 22, 22–41PubMedGoogle Scholar
  66. Gramer E, Gerlach R, Krieglstein GK, Leydhecker W (1982) Zur Topographie früher glaukomatöser Gesichtsfeldausfälle bei der Computerperimetrie. Klin Monatsbl Augenheilk 180, 515–523Google Scholar
  67. Granit R (1947) Sensory mechanisms of the retina. Hafner, New YorkGoogle Scholar
  68. Granit R (1955) Centrifugal and antidromic effects on ganglion cells of retina. J Neurophysiol 18, 388–411PubMedGoogle Scholar
  69. Granit R, Hammond EL (1931) Comparative studies on the peripheral and central retina. V. The sensation-time curve and time course of the fusion frequency on intermittent stimulation. Am J Physiol 98, 654–663Google Scholar
  70. Greenberg JH, Reivich M, Alavi A, Hand P, Rosenquist A, Rintelmann W, Stein A, Tusa R, Dann R, Christman D, Fowler J, McGregor B, Wolf A (1981) Metabolic mapping of functional activity in human subjects with the [18-F]fluorodeoxyglucose technique. Science 212, 678–680PubMedGoogle Scholar
  71. Grehn F, Prost M (1983) Function of retinal nerve fibers depends on perfusion pressure: neurophysiologic investigations during acute intraocular pressure elevation. Invest Ophthalmol 24, 347–353Google Scholar
  72. Griff ER, Steinberg RH (1982) Origin of the light peak: in vitro study of Gekko gekko. J Physiol 331, 637–652PubMedGoogle Scholar
  73. Groneberg A, Teping C (1980) Topodiagnostik von Sehstörungen durch Ableitung retinaler und kortikaler Antworten auf Umkehr-Kontrastmuster. Ber Dtsch Ophthalmol Ges 77, 409–415Google Scholar
  74. Grüsser O-J (1984) Face recognition within the reach of neurobiology and beyond it. Hum Neurobiol 3, 183–190PubMedGoogle Scholar
  75. Grüsser O-J, Kapp H (1958) Reaktionen retinaler Neurone nach Lichtblitzen. II. Doppelblitze mit wechselndem Blitzintervall. Pflügers Arch 266, 111–129PubMedGoogle Scholar
  76. Grüsser O-J, Rabelo C (1958) Reaktionen retinaler Neurone nach Lichtblitzen. I. Einzelblitze und Blitzreize wechselnder Frequenz. Pflügers Arch 265, 501–525PubMedGoogle Scholar
  77. Gstalder RJ, Green DG (1971) Laser interferometric acuity in amblyopia. J Pediatr Ophthalmol 8, 251–256Google Scholar
  78. Hall GS, von Kries J (1879) Über die Abhängigkeit der Reaktionszeit vom Ort des Reizes. Arch Anat Physiol (Leipzig) [Suppl] 1–10Google Scholar
  79. Halliday AM, McDonald WI, Mushin J (1973) The visual evoked response in the diagnosis of multiple sclerosis. Br Med J 4, 661–664PubMedGoogle Scholar
  80. Hayreh SS, Revie IHS, Edwards J (1970) Vasogenic origin of visual field defects and optic nerve changes in glaucoma. Br J Ophthalmol 54, 461–472PubMedGoogle Scholar
  81. Hebel R, Holländer H (1983) Size and distribution of ganglion cells in the human retina. Anat Embryol 168, 125–136PubMedGoogle Scholar
  82. Hirsch HVB, Spinelli DN (1970) Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168, 869–871PubMedGoogle Scholar
  83. Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39, 526–530PubMedGoogle Scholar
  84. Holden AL, Powell TPS (1972) The functional organization of the isthmo-optic nucleus in the pigeon. J Physiol 223, 419–447PubMedGoogle Scholar
  85. Holländer H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 55, 483–493PubMedGoogle Scholar
  86. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6, 65–70Google Scholar
  87. Holmes G (1945) The organization of the visual cortex in man. Proc R Soc, Lond (Biol) 132, 348–361Google Scholar
  88. Hubel DH, Wiesel TN (1970a) Cells sensitive to binocular depth in area 18 of the macaque monkey cortex, Nature 225, 41–42PubMedGoogle Scholar
  89. Hubel DH, Wiesel TN (1970b) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206, 419–436PubMedGoogle Scholar
  90. Hughes A (1975) A quantitative analysis of the cat retinal ganglion cell topography. J Comp Neurol 163, 107–128PubMedGoogle Scholar
  91. Hughes A, Wässle H (1976) The cat optic nerve: fibre total count and diameter spectrum. J Comp Neurol 169, 171–184PubMedGoogle Scholar
  92. Hylkema BS (1942) Examination of the visual field by determining the fusion frequency. Acta Ophthalmol 20, 181–193Google Scholar
  93. Jampolsky A (1978) Unequal visual inputs in strabismus management: a comparison of human and animal strabismus. In: Symposium on strabismus. Transactions of the New Orleans Academy of Ophthalmology. Mosby, St. Louis, pp 358–492Google Scholar
  94. Jeeves MA (1984) The historical roots and recurring issues of neurobiological studies of face perception. Hum Neurobiol 3, 191–196PubMedGoogle Scholar
  95. Jeffreys DA, Smith AT (1979) The polarity inversion of scalp potentials evoked by upper and lower half field stimulus patterns: latency or surface distribution differences? Electroencephalogr Clin Neurophysiol 46, 409–415PubMedGoogle Scholar
  96. Jewett DL, Romano MN, Williston JS (1970) Human auditory evoked potentials: possible brain stem components detected on the scalp. Science 167, 1517–1518PubMedGoogle Scholar
  97. Jones RK, Wilcott IT (1977) Topographic impairment of night vision related to exercise. Am J Ophthalmol 84, 868–871PubMedGoogle Scholar
  98. Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, ChicagoGoogle Scholar
  99. Kavanagh RN, Darcey TM, Lehmann D, Fender DH (1978) Evaluation of methods for three-dimensional localization of electrical sources in the human brain. IEEE Trans Biomed Eng 25, 421–429PubMedGoogle Scholar
  100. Kimura H, Tsutsui J (1981) Average responses evoked by moving grating pattern in the upper, central and lower visual field. Neurosci Lett 24, 295–299PubMedGoogle Scholar
  101. King-Smith PE (1969) Absorption spectra and function of the colored oil drops in the pigeon retina. Vision Res 9, 1391–1399PubMedGoogle Scholar
  102. Kleberger E (1955) Untersuchungen über die Verschmelzungsfrequenz intermittierendenLichts an gesunden und kranken Augen. III. Das normale Flimmergesichtsfeld. Graefes Arch Ophthalmol 157, 158–166Google Scholar
  103. Kriss A, Halliday AM (1980) A comparison of occipital potentials evoked by pattern onset, offset and reversal by movement. In: Barber C (ed) Evoked potentials. MTP Press, Lancaster, pp 205–212Google Scholar
  104. Kuba M, Peregrin K, Vit F, Hanusova I (1982) Visual evoked responses to reversal stimulation in the upper and lower half of the central part of the visual field in man. Physiol Bohemeslow 31, 503–510Google Scholar
  105. Landau D, Dawson WW (1970) The histology of retinas from the pinnipedia. Vision Res 10, 691–702PubMedGoogle Scholar
  106. Landis C (1954) Determinants of critical flicker-fusion threshold. Physiol Rev 34, 259–286PubMedGoogle Scholar
  107. Landolt E, Hummelsheim E (1904) Die Untersuchung der Funktionen des excentrischen Netzhautgebietes. In: Sämisch T (ed) Gräfe-Sämisch Handbuch der gesamten Augenheilkunde, vol 4. Engelmann, Leipzig, pp 503–583Google Scholar
  108. Lawden MC (1982) The analysis of spatial phase in amblyopia. Hum Neurobiol 1, 55–60PubMedGoogle Scholar
  109. Lehmann D (1977) The EEG as scalp field distribution. In: Rémond A (ed) EEG informatics. Elsevier, Amsterdam, pp 365–384Google Scholar
  110. Lehmann D (1984) EEG measurement of brain activity: spatial aspects, segmentation and imaging. Int J Psychophysiol 1, 267–276PubMedGoogle Scholar
  111. Lehmann D, Julesz B (1978) Lateralized cortical potentials elicited by dynamic random dot stereograms. Vision Res 18, 1265–1271PubMedGoogle Scholar
  112. Lehmann D, Mir Z (1976) Methodik und Auswertung visuell evozierter EEG-Potentiale bei Verdacht auf multiple Sklerose. J Neurol 213, 97–103PubMedGoogle Scholar
  113. Lehmann D, Skrandies W (1979) Multichannel evoked potential fields show different properties of human upper and lower hemi-retinal systems. Exp Brain Res 35, 151–159PubMedGoogle Scholar
  114. Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48, 609–621PubMedGoogle Scholar
  115. Lehmann D, Skrandies W (1984) Spatial analysis of evoked potentials in man: a review. Progr Neurobiol 23, 227–250Google Scholar
  116. Lehmann D, Meles HP, Mir Z (1977) Average multichannel EEG potential fields evoked from upper und lower hemiretina: latency differences. Electroencephalogr Clin Neurphysiol 43, 725–731Google Scholar
  117. Lehmann D, Darcey TM, Skrandies W (1982) Intracerebral and scalp fields evoked by hemiretinal checkerboard reversal, and modeling of their dipole generators. In: Courjon J, Maugiere F, Revol M (eds) Clinical applications of evoked potentials in neurology. Raven, New York, pp 41–48Google Scholar
  118. Lesèvre N (1972) Potentiels évoqués par des patterns chez l’homme: influence des variables caracterisant le stimulus et sa position dans le champ visuel. In: Fessard A, Lelord G (eds) Activités evoquées et leur conditionnement. INSERM, Paris, pp 1–22Google Scholar
  119. Lesèvre N, Joseph JP (1979) Modifications of the pattern-evoked potential (PEP) in relation to the stimulated part of the visual field. Electroencephalogr Clin Neurophysiol 47, 183–203PubMedGoogle Scholar
  120. Lichtenstein M, White CT (1961) Relative visual latency as a function of retinal locus. J Opt Soc Am 51, 1033–1034PubMedGoogle Scholar
  121. Lindsley DB, Lansing RW (1956) Flicker and two-flash fusional threshold and EEG, Am Psychol 11, 433Google Scholar
  122. Linsenmeyer RA, Steinberg RH (1982) Origin and sensitivity of the light peak in the intact cat eye. J Physiol 331, 653–673Google Scholar
  123. Lipkin BS (1962) Monocular flicker discrimination as a function of the luminance and area of contralateral steady light: I. Luminance. II. Area. J Opt Soc Am 52:1287–1295, 1296–1300Google Scholar
  124. Low FN (1943) The peripheral visual acuity of 100 subjects. Am J Physiol 140, 83–88Google Scholar
  125. Lundh BL, Lennerstrand G, Derefeldt G (1983) Central and peripheral normal contrast sensitivity for static and dynamic sinusoidal gratings. Acta Ophthalmol 61, 171–182Google Scholar
  126. Luria SM, Kinney JA (1970) Underwater vision. Science 167, 1454–1461PubMedGoogle Scholar
  127. MacKay DM (1984a) Source density analysis of scalp potentials during evaluated action. I. Coronal distribution. Exp Brain Res 54, 73–85PubMedGoogle Scholar
  128. MacKay DM (1984b) Source density analysis of scalp potentials during evaluated action. II. Lateral coronal distributions. Exp Brain Res 54, 86–94PubMedGoogle Scholar
  129. Maffei L (1982) Electroretinographic and visual cortical potentials in response to alternating gratings. Ann NY Acad Sci 388, 1–10PubMedGoogle Scholar
  130. Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211, 953–955Google Scholar
  131. Maffei L, Fiorentini A, Bisti S, Holländer H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59, 423–425PubMedGoogle Scholar
  132. Magrotti E, Cosi V, Borutti G (1980) Differenze funzionali tra emicampi visivi superiore ed inferiore per stimoli non strutturanti. Boll Soc Ital Biol Sper 56, 416–422PubMedGoogle Scholar
  133. Martin GR, Muntz WRA (1979) Retinal oil droplets and vision in the pigeon (Columba liva). In: Granda AM, Maxwell JF (eds) Neural mechanisms of behavior in the pigeon. Plenum, New York, pp 307–325Google Scholar
  134. Matelli M, Olivieri MF, Saccani A, Rizzoloatti G (1983) Upper visual space neglect and motor deficits after section of the midbrain commissures in the cat. Behav Brain Res 10, 263–285PubMedGoogle Scholar
  135. McAlpine D, Lumsden CE, Acheson ED (1972) Multiple sclerosis: a reappraisal. Williams and Wilkins, BaltimoreGoogle Scholar
  136. Millodot M, Lamont A (1974) Peripheral visual acuity in the vertical plane. Vision Res 14, 1497–1498Google Scholar
  137. Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65, 37–100PubMedGoogle Scholar
  138. Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33, 371–394PubMedGoogle Scholar
  139. Murray I, MacCana F, Kulikowski JJ (1983) Contribution of two movement detecting mechanisms to central and peripheral vision. Vision Res 23, 151–159PubMedGoogle Scholar
  140. Nachmias J (1959) Two-dimensional motion of the retinal image during monocular fixation. J Opt Soc Am 49, 901–908PubMedGoogle Scholar
  141. Nagata T, Hayashi Y (1984) The visual field representation of the rat ventral lateral geniculate nucleus. J Comp Neurol 227, 582–588PubMedGoogle Scholar
  142. Newman RP, Kinkel WR, Jacobs L (1984) Altitudinal hemianopia caused by occipital infarctions. Arch Neurol 41, 413–418PubMedGoogle Scholar
  143. Niemeyer G (1975) The function of the retina in the perfused eye. Doc Ophthalmol 35, 53–116Google Scholar
  144. Nuboer JFW, Wortel JF (1985) Wavelength discrimination in the lower and upper visual field of the pigeon. J Physiol 366, 95PGoogle Scholar
  145. Nunez P (1981) Electric fields of the brain. Oxford University Press, New YorkGoogle Scholar
  146. Østerberg G (1935) Topography of the layer of rods and cones in the human retina. Acta Ophthalmol [13 Suppl. 6]: 1–102Google Scholar
  147. Oyster CW, Takahashi ES, Cilluffo M, Brecha NC (1985) Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina. Proc Natl Acad Sci 82, 6335–6339PubMedGoogle Scholar
  148. Payne WH (1965) Visual reaction times on a circle about the fovea. Science 155, 481–482Google Scholar
  149. Pease VP, Sticht TG (1965) Reaction time as a function of onset and offset stimulation of the fovea and periphery. Percept Mot Skills 20, 549–554PubMedGoogle Scholar
  150. Phelps ME, Kuhl DE, Mazziotta JC (1981) Metabolic mapping of the brain’s response to visual stimulation: studies in humans. Science 211, 1445–1448PubMedGoogle Scholar
  151. Phillips G (1933) Perception of flicker in lesions of the visual pathways. Brain 56, 464–478Google Scholar
  152. Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centers. Arch Psychol 3, 1–73Google Scholar
  153. Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol 40, 1392–1405PubMedGoogle Scholar
  154. Presson J, Moran J, Gordon B (1983) Effects of eye rotation on visually guided behavior. J Neurophysiol 50, 631–643PubMedGoogle Scholar
  155. Prinz W (1984) Attention and sensitivity in visual search. Psychol Res 45, 355–366PubMedGoogle Scholar
  156. Quingley HA, Flower RW, Addicks EM, McLeod DS (1980) The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol 19, 505–517Google Scholar
  157. Rains JD (1963) Signal luminance and position effects in human reaction time. Vision Res 3, 239–251Google Scholar
  158. Regan D, Silver R, Murray TJ (1977) Visual acuity and contrast sensitivity in multiple sclerosis — hidden visual loss. Brain 100, 563–579PubMedGoogle Scholar
  159. Rémond A, Lesèvre N, Joseph JP, Rieger H, Lairy GC (1969) The alpha average: I. Methodology and description. Electroencephalogr Clin Neurophysiol 26, 245–265PubMedGoogle Scholar
  160. Reuter TE, White RH, Wald G (1971) Rhodopsin and porphyropsin in the adult bullfrog retina. J Gen Physiol 58, 351–371PubMedGoogle Scholar
  161. Riemslag FCC, Ringo JL, Spekreijse H, Verduyn Lunel HF (1985) The luminance origin of the pattern electroretinogram in man. J Physiol 363, 191–209PubMedGoogle Scholar
  162. Riggs LA, Johnson EP, Schick AML (1964) Electrical responses of the human eye to moving stimulus patterns. Science 144, 567PubMedGoogle Scholar
  163. Scalia F (1976) The optic pathway of the frog: nuclear organization and connections. In: Llinas R, Precht W (eds) Frog neurobiology. Springer Berlin Heidelberg New York, pp 386–406Google Scholar
  164. Schade OH (1956) Optical and photoelectric analog of the eye. J Opt Soc Am 46, 721–739PubMedGoogle Scholar
  165. Schmidt M, Wässle H, Humphrey M (1985) Number and distribution of putative cholinergic neurons in the cat retina. Neurosci Lett 59, 235–240PubMedGoogle Scholar
  166. Schneider MR (1972) A multistage process for computing dipolar sources of EEG discharges from surface information. IEEE Trans Biomed Eng 19, 1–12PubMedGoogle Scholar
  167. Schneider MR (1974) Effect of inhomogeneities on surface signals coming from a cerebral dipole source. IEEE Trans Biomed Eng 21, 52–54PubMedGoogle Scholar
  168. Schwartz EL, Christman DR, Wolf AP (1984) Human primary visual cortex topography imaged via positron tomography. Brain Res 294, 225–230PubMedGoogle Scholar
  169. Seiple WH, Siegel IM (1983) Recording the pattern electroretinogram: a cautionary note. Invest Ophthalmol 24, 796–798Google Scholar
  170. Seneviratne KN (1963) The representation of the visual field on the subcortical centers of the cat and rabbit. PhD thesis, EdinburghGoogle Scholar
  171. Seneviratne KN, Whitteridge D (1962) Visual evoked responses in the lateral geniculate nucleus. Electrocephalogr Clin Neurophysiol 14, 785Google Scholar
  172. Shickman GM (1981) Time-dependent functions in vision. In: Moses RA (ed) Adler’s physiology of the eye. Mosby, St. Louis, pp 663–713Google Scholar
  173. Shurong W, Kun Y, Yinting W (1981) Visual field topography and binocular responses in frog’s nucleus isthmi. Scientia Sin [B] 24, 1292–1301Google Scholar
  174. Sidman RD, Giambalvo V, Allison T, Bergey P (1978) A method for localization of sources of human cerebral potentials evoked by sensory stimuli. Sensory Proc 2, 116–129Google Scholar
  175. Simonson E (1958) Contralateral glare effect on the fusion frequency of flicker. Arch Ophthalmol 60, 995–999Google Scholar
  176. Skrandies W (1981) Latent components of potentials evoked by visual stimuli in different retinal locations. Int J Neurosci 14, 77–84PubMedGoogle Scholar
  177. Skrandies W (1983) Information processing and evoked potentials: topography of early and late components. Adv Biol Psychiatr 13, 1–12Google Scholar
  178. Skrandies W (1984a) Differences of visual evoked potential latencies and topographies depending on retinal location and presentation mode. Pflügers Arch 400, R31Google Scholar
  179. Skrandies W (1984b) Scalp potential fields evoked by grating stimuli: effects of spatial frequency and orientation. Electroencephalogr Clin Neurophysiol 58, 325–332PubMedGoogle Scholar
  180. Skrandies W (1985a) Critical flicker fusion and double flash discrimination in different parts of the visual field. Int J Neurosci 25, 225–231PubMedGoogle Scholar
  181. Skrandies W (1985b) Human contrast sensitivity: regional retinal differences. Hum Neurobiol 4, 95–97Google Scholar
  182. Skrandies W (1986a) Visual evoked potential topography: methods and results. In: Duffy FH (ed) Topographic mapping of brain electrical activity. Butterworth, Boston, pp 7–28Google Scholar
  183. Skrandies W (1986b) Temporal summation of stereoscopic visual stimuli: brain electric components and subjective perception. In: Rohrbaugh JW, Johnson R, Parasuraman R (eds) Research reports of EPIC VIII conference, Stanford, pp 397–399Google Scholar
  184. Skrandies W, Baier M (1986) Activity of human pigment epithelium shows differences between upper and lower retinal areas. Vision Res 26, 577–581PubMedGoogle Scholar
  185. Skrandies W, Gottlob I (1986) Alterations of visual contrast sensitivity in Parkinson’s Disease. Hum Neurobiol 5, 255–259PubMedGoogle Scholar
  186. Skrandies W, Lehmann D (1982a) Occurrence time and scalp location of components of evoked EEG potential fields. In: Herrmann WM (ed) Electroencephalography in drug research. Fischer, Stuttgart, pp 183–192Google Scholar
  187. Skrandies W, Lehmann D (1982b) Spatial principal components of multichannel maps evoked by lateral visual half-field stimuli. Electroencephalogr Clin Neurophysiol 54, 662–667PubMedGoogle Scholar
  188. Skrandies W, Vomberg HE (1985) Stereoscopic stimuli activate different cortical neurones in man: electrophysiological evidence. Int J Psychophysiol 2, 293–296PubMedGoogle Scholar
  189. Skrandies W, Richter M, Lehmann D (1980) Checkerboard evoked potentials: topography and latency for onset, offset, and reversal. Progr Brain Res 54, 291–295Google Scholar
  190. Skrandies W, Wässle H, Peichl L (1978) Are field potentials an appropriate method for demonstrating connections in the brain? Exp Neurol 60, 509–521PubMedGoogle Scholar
  191. Skrandies W, Chapman RM, McCrary JW, Chapman JA (1984) Distribution of latent components related to information processing. Ann NY Acad Sci 425, 271–277PubMedGoogle Scholar
  192. Soso MJ, Lettich E, Belgum JH (1980) Pattern-sensitive epilepsy. II: Effects of pattern orientation and hemifield stimulation. Epilepsia 21, 313–323PubMedGoogle Scholar
  193. Southall JPC (1962) Helmholtz’s treatise on physiological optics. Dover, New YorkGoogle Scholar
  194. Spalding JMK (1952) Wounds of the visual pathway. J Neurol Neurosurg Psychiatr 15, 169–183PubMedGoogle Scholar
  195. Sperry RW (1964) The great cerebral commissure. Sci Am 210, 42–52PubMedGoogle Scholar
  196. Sperry RW (1968) Hemisphere deconnection and unity in conscious awareness. Am Psychol 23, 723–733PubMedGoogle Scholar
  197. Standage GP, Benevento LA, The organization of connections between the pulvinar and visual area MT in the macaque monkey. Brain Res 262, 288–294Google Scholar
  198. Starr A, Achor J (1975) Auditory brainstem responses in neurological disease. Arch Neurol 32, 761–768PubMedGoogle Scholar
  199. Stone J, Johnston E (1981) The topography of primate retina: a study of the human, bushbaby, and New- and Old-World monkeys. J Comp Neurol 196, 205–223PubMedGoogle Scholar
  200. Sutton S, Braren M, Zubin J, John ER (1965) Evoked potential correlates of stimulus uncertainty. Science 150, 1187–1188PubMedGoogle Scholar
  201. Talairach J, Szikla G (1967) Atlas of stereotaxic anatomy of the telencephalon. Masson, ParisGoogle Scholar
  202. Täumer R (ed) (1976) Electro-oculography — its clinical importance. Karger, Basel. Bibliotheca Ophthalmologica, Vol 85Google Scholar
  203. ten Doesschate J (1946) Visual acuity and distribution of percipient elements on the retina. Ophthalmologica 112, 1–18Google Scholar
  204. Teuber H-L, Battersby WS, Bender MB (1960) Visual field defects after penetrating missile wounds of the brain. Harvard University Press, CambridgeGoogle Scholar
  205. Teuber ML (1974) Sources of ambiguity in the prints of Maurits C. Escher. Sci. Am. 231 (No 1), 90–104Google Scholar
  206. Torrealba F, Guillery RW, Eysel U, Polley EH, Mason CA (1982) Studies of retinal representations within the cat’s optic tract. J Comp Neurol 211, 377–396PubMedGoogle Scholar
  207. Tusa RJ, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol 177, 213–236PubMedGoogle Scholar
  208. Valeton JM, van Norren D (1982) Intraretinal recording of slow electrical responses to steady illumination in monkey: isolation of receptor responses and the origin of the light peak. Vision Res 22, 393–399PubMedGoogle Scholar
  209. van Buren A (1963) The retinal ganglion cell layer. Thomas, SpringfieldGoogle Scholar
  210. van de Grind WA, Grüsser O-J, Lunkenheimer H-U (1973) Temporal transfer properties of the afferent visual system. Psychophysical, neurophysiological and theoretical investigations. In: Jung R (ed) Handbook of sensory physiology, Vol VII/3A. Springer, Berlin Heidelberg New York, pp 431–573Google Scholar
  211. van der Waerden BL (1971) Mathematische Statistik, 3rd ed. Springer, Berlin Heidelberg New YorkGoogle Scholar
  212. van Essen DC (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex, Vol 3. Plenum, New York, pp 259–329Google Scholar
  213. van Essen DC, Maunsell JHR, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199, 293–326PubMedGoogle Scholar
  214. van Essen DC, Newsome WT, Maunsell JHR (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropics, and individual variability. Vision Res 24, 429–448PubMedGoogle Scholar
  215. van Essen DC, Newsome WT, Maunsell JHR, Bixby JL (1986) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. J Comp Neurol 244, 451–480PubMedGoogle Scholar
  216. Vaney DI (1985) The morphology and topographic distribution of AII amacrine cells in the cat retina. Proc R Soc Lond [Biol] 224, 475–488Google Scholar
  217. Vaney DI, Hughes A (1976) Rabbit optic nerve: fibre diameter spectrum, fibre count, and comparison with a retinal ganglion cell count. J Comp Neurol 170, 241–251PubMedGoogle Scholar
  218. Vomberg HE, Skrandies W (1985) Untersuchung des Stereosehens im Zufallspunktmuster-VECP: Normbefunde und klinische Anwendung. Klin Monatsbl Augenheilkd 187, 205–208PubMedGoogle Scholar
  219. von der Heydt R, Hänni P, Dürsteier M, Peterhans E (1981) Neuronal responses to stereoscopic stimuli in the alert monkey — a comparison between striate and prestriate cortex. Pflügers Arch 391, R34Google Scholar
  220. von Helmholtz H (1853) Über einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierelektrischen Versuche. Ann Phys Chemie 29: 211–233, 353–377Google Scholar
  221. von Helmholtz H (1910) Handbuch der physiologischen Optik, Vol 3, 3rd edn. Voss, HamburgGoogle Scholar
  222. Wässle H, Peichl L, Boycott BB (1978) Topography of horizontal cells in the retina of the domestic cat. Proc R Soc Lond [Biol] 203, 269–291Google Scholar
  223. Wernicke C (1874) Der aphasische Symtomenkomplex. Cohne und Weigert, BreslauGoogle Scholar
  224. Wertheim T (1894) Über die indirekte Sehsschärfe. Z Psychol Physiol Sinnesorg 7, 172–187Google Scholar
  225. Whitteridge D (1973) Projection of optic pathways to the visual corex. In: Jung R (ed) Handbook of sensory physiology, Vol VII/3B. Springer, Berlin Heidelberg New York, pp 247–268Google Scholar
  226. Wilson FN, Bayley RH (1950) The electric field of an eccentric dipole in a homogenous spherical conducting medium. Circulation 1, 84–92PubMedGoogle Scholar
  227. Woodworth RS (1938) Experimental psychology. Holt, New YorkGoogle Scholar
  228. Woodworth RS, Schlossberg H (1955) Experimental psychology, 3rd edn. Holt, New YorkGoogle Scholar
  229. Yanashima K (1982) Surface distribution of steady-state cortical potentials evoked by visual half-field stimulation. Gräfes Arch Ophthalmol 218, 118–123Google Scholar
  230. Yarbus AL (1967) Eye movements and vision. Plenum, New YorkGoogle Scholar
  231. Zihl J, von Cramon D (1986) Zerebrale Sehstörungen. Kohlhammer, StuttgartGoogle Scholar
  232. Zubek JP, Bross M (1972) Depression and later enhancement of the critical flicker frequency during prolonged monocular deprivation. Science 176, 1045–1047PubMedGoogle Scholar
  233. Zubek JP, Bross M (1973) Changes in critical flicker frequency during and after fourteen days of monocular deprivation. Nature 241, 288–290PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1987

Authors and Affiliations

  • W. Skrandies
    • 1
  1. 1.Max-Planck-Institut für Physiologische und Klinische ForschungW.G. Kerckhoff-InstitutBad NauheimGermany

Personalised recommendations