Skip to main content

Roles of Transport and Binding in the Specific ΔpH-Dependent Accumulation of Auxin by Zucchini Membrane Vesicles

  • Conference paper
Book cover Plant Growth Substances 1985

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The growth of plants is coordinated in part by the polar transport of the endogenous auxin indoleacetic acid (IAA). Studies on the pH-dependent accumulation of auxin by cells and tissues suspended in buffered auxin solutions [4, 13, 15–17, 19, 21, 22] have led to the realization that this process involves some of the same elements as polar transport in isolated tissues and intact plants [2, 5, 6]. The available evidence suggests a model for the ΔpH-dependent uptake and transport of IAA (Fig. 1) that includes: (1) permeation of the neutral lipophilic form of the weak acid (IAAH) through the lipid bilayer; (2) a saturable symport of the auxin anion (IAA) with protons; and (3) a passive efflux of LAA via a specific saturable anion channel (carrier) sensitive to napthylphthalamic (NPA) [20] and 2,3,5-triiodobenzoic acids (TIBA), herbicides known to stimulate cellular auxin accumulation at the expense of polar auxin transport [3, 5, 19, 21, 22]. Localization of the IAA“ efflux sites at the base of cells is believed to be the physical basis for polar transport [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark KA, Goldsmith MHM (1985) In preparation

    Google Scholar 

  2. Davies PJ, Rubery PH (1978) Planta (Berl) 142:211

    Article  CAS  Google Scholar 

  3. Depta H, Rubery PH (1984) J Plant Physiol 115:371

    CAS  Google Scholar 

  4. Edwards KL, Goldsmith MHM (1980) Planta (Berl) 147:457

    Article  CAS  Google Scholar 

  5. Goldsmith MHM (1982) Planta (Berl) 155:68

    Article  CAS  Google Scholar 

  6. Goldsmith MHM, Goldsmith TH, Martin MH (1981) Proc Natl Acad Sci USA 78:976

    Article  PubMed  CAS  Google Scholar 

  7. Hertel R, Lomax TL, Briggs WR (1983) Planta (Berl) 157:193

    Article  CAS  Google Scholar 

  8. Jacobs M, Gilbert SF (1983) Science 220:1297

    Article  PubMed  CAS  Google Scholar 

  9. Jacobs M, Hertel R (1978) Planta (Berl) 142:1

    Article  CAS  Google Scholar 

  10. Lomax TL (1983) Ph.D. Thesis, Stanford University

    Google Scholar 

  11. Lomax TL, Mehlhorn RJ (1985) Biochim Biophys Acta 821:106

    Article  PubMed  CAS  Google Scholar 

  12. Lomax TL, Mehlhorn RJ, Briggs WR (1985) Proc Natl Acad Sci USA 82:6541

    Article  PubMed  CAS  Google Scholar 

  13. Raven J (1975) New Phytol 74:163

    Article  CAS  Google Scholar 

  14. Rottenberg H (1979) Methods Enzymol 55F:547

    Article  Google Scholar 

  15. Rubery PH (1977) Planta (Berl) 135:275

    Article  CAS  Google Scholar 

  16. Rubery PH (1978) Planta (Berl) 142:203

    Article  CAS  Google Scholar 

  17. Rubery PH (1979) Planta (Berl) 144:173

    Article  CAS  Google Scholar 

  18. Rubery PH (1981) Annu Rev Plant Physiol 32:569

    Article  CAS  Google Scholar 

  19. Rubery PH, Sheldrake AR (1974) Planta (Berl) 118:101

    Article  CAS  Google Scholar 

  20. Sussman MR, Goldsmith MHM (1981a) Planta (Berl) 151:15

    Article  CAS  Google Scholar 

  21. Sussman MR, Goldsmith MHM (1981b) Planta (Berl) 152:13

    Article  CAS  Google Scholar 

  22. Thomson KSt, Hertel R, Muller S, Tavares IE (1973) Planta (Berl) 109:337

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clark, K.A., Goldsmith, M.H.M. (1986). Roles of Transport and Binding in the Specific ΔpH-Dependent Accumulation of Auxin by Zucchini Membrane Vesicles. In: Bopp, M. (eds) Plant Growth Substances 1985. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71018-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71018-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71020-9

  • Online ISBN: 978-3-642-71018-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics