Studies of Stress- and Fatigue-Induced Defects Using Small-Angle Neutron Scattering

  • J. R. Weertman
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 10)


The technique of small-angle neutron scattering (SANS) is proving to be of great value in the study of deformation-induced defects in various materials. Frequently SANS is the only practicable method for obtaining detailed, quantitative information on the kinetics of defect production. In crystalline material, the following defects produced by deformation are most amenable to study by SANS: bulk microcracking in brittle material; voids, bubbles and vacancy clusters; dislocations. If a broad definition is adopted for the types of defects to be considered, we can include the accelerated coarsening of particles and precipitates produced by high-temperature deformation. To date the greatest success with SANS in the study of defects associated with stress has been achieved with cavities (voids, etc.) and microcracks. The presence of dislocations can be detected by neutron scattering, but more extensive data on their nature, disposition and density usually can be obtained readily by TEM examination of thin foils. Accordingly, emphasis in this review will be on those defects for which neutron scattering has yielded detailed information not readily available by other methods.


Ferritic Stainless Steel Void Nucleation Vacancy Cluster Creep Cavitation SANS Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A. Page, J. Lankford and S. Spooner, J. Mats. Sci. 19, 3360 (1984.)ADSCrossRefGoogle Scholar
  2. 2.
    R.A. Page, J. Lankford and S. Spooner, Acta. Met. 32, 1275 (1984).CrossRefGoogle Scholar
  3. 3.
    J. Lankford, K.S. Chan and R.A. Page, Frac. Mech. of Ceramics, in press.Google Scholar
  4. 4.
    R.A. Page and S. Spooner, J. Mats. Sci., in press.Google Scholar
  5. 5.
    A.G. Evans and A. Rana, Acta. Met. 28, 129 (1980).CrossRefGoogle Scholar
  6. 6.
    Treatise on Materials Science and Engineering, Vol. 15, G. Kostorz, Ed. (Academic Press, 1975).Google Scholar
  7. 7.
    R. Raj, Met. Trans 6A, 1499 (1975).Google Scholar
  8. 8.
    I.S. Fedorova and P.W. Schmidt, J. Appl. Cryst. 11, 405 (1978).CrossRefGoogle Scholar
  9. 9.
    O.L. Brill and P.W. Schmidt, J. Appl. Phys. 39, 2274 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    R. Raj and M.F. Ashby, Acta Met. 23, 653, (1975).CrossRefGoogle Scholar
  11. 11.
    K.S. Chan, J. Lankford and R.A. Page, Acta Met. 32, 1907 (1984).CrossRefGoogle Scholar
  12. 12.
    M.H. Yoo, J.C. Ogle, B.S. Borie, E.H. Lee and R.W. Hendricks, Acta Met. 30, 1733 (1982).CrossRefGoogle Scholar
  13. 13.
    T. Saegusa, J.R. Weertman, J.B. Cohen and M. Roth, J. Appl. Cryst. 11, 602 (1978).CrossRefGoogle Scholar
  14. 14.
    R. Page, J.R. Weertman and M. Roth, Acta Met. 30, 1357 (1982).CrossRefGoogle Scholar
  15. 15.
    M.S. Yang, J. R. Weertman and M. Roth, Scripta Met. 18, 543 (1984).CrossRefGoogle Scholar
  16. 16.
    J.G. Cabanas-Moreno, M.S. Yang, M. Roth, Z.Y. Zhang, G.D. Wignall and W.C. Koehler, “Studies of Grain Boundary Cavitation by SANS”, in ASTM STP 811, J. Lankford, D.L. Davidson, W.L. Morris and R.P. Wei, Eds., (American Soc. for Testing and Materials, 1983).Google Scholar
  17. 17.
    A.S. Argon, I.W. Chen and C.W. Lau, “Intergranular Cavitation in Creep: Theory and Experiment”, in Creep-Fatigue-Environmental Interactions, R.M. Pelloux and N.S. Stoloff, Eds., (TMS-AIME, Warrendale, PA, 1980).Google Scholar
  18. 18.
    J.R. Weertman, Can. Metall. Q. 18, 73 (1979).Google Scholar
  19. 19.
    T.G. Langdon and R.C. Gifkins, Scripta Met. 13, 1191 (1979).CrossRefGoogle Scholar
  20. 20.
    P. Yavari and T.G. Langdon, Scripta Met. 14, 551 (1980).CrossRefGoogle Scholar
  21. 21.
    J.G. Cabañas-Moreno, Ph.D. Thesis, Northwestern University, Evanston, IL, June, 1984.Google Scholar
  22. 22.
    M.S. Yang, Ph.D. Thesis, Northwestern University, Evanston, IL, June, 1984.Google Scholar
  23. 23.
    G.G. Nilsson and M. Roth, Mat. Sci. Eng. 50, 101 (1981).CrossRefGoogle Scholar
  24. 24.
    M.H. Yoo, J.C. Ogle, J.H. Schneibel and R.W. Swindeman, in Strength of Metals and Alloys, 2, R.L. Gifkins, Ed. (Pergamon Press, Oxford, 1983).Google Scholar
  25. 25.
    R.A. Page, Met Trans A, in press.Google Scholar
  26. 26.
    U. Essmann, U. Gösele and H. Mughrabi, Phil. Mag A, 44, 405 (1981).ADSGoogle Scholar
  27. 27.
    P.O. Kettunen, T. Lepisto, G. Kostorz and G. Goltz, Acta Met. 29, 969 (1981).CrossRefGoogle Scholar
  28. 28.
    G. Kostorz, Mats. Res. Soc. Symposium Proceedings, 41, 107 (Materials Research Society, Pittsburgh, PA, 1985).CrossRefGoogle Scholar
  29. 29.
    E.D. Case and C.J. Glinka, J. Mats. Sci. 19, 2962 (1984).ADSCrossRefGoogle Scholar
  30. 30.
    D. Schwahn, W. Kesternich and H. Schuster, Met. Trans. A 12A, 155 (1981).CrossRefGoogle Scholar
  31. 31.
    S. Kim, Ph.D. Thesis, Northwestern University, Evanston, IL, June 1985.Google Scholar
  32. 32.
    M.S. Yang, J.R. Weertman and M. Roth, “Use of SANS to Study Grain Boundary Cavitation”, in Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Eds., (Pineridge Press, Swansea, 1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. R. Weertman
    • 1
  1. 1.Department of Materials Science and Engineering and Materials Research CenterNorthwestern UniversityEvanstonUSA

Personalised recommendations