Universal Scaling Properties of Nonlinear Dissipative Systems

  • R. W. Leven
  • B. Pompe
Part of the Springer Series in Synergetics book series (SSSYN, volume 33)


As was pointed out by different authors, there is a striking resemblance of chaotic phenomena to critical phenomena (see e.g. /1/). In particular the concepts of scaling and universality are crucial for the understanding of both. The most interesting universal properties of chaotic systems are connected with transitions from ordered to chaotic motions and vice versa, as well as transitions from one chaotic regime to another. Such transitions occur if a control parameter is varied, and in many cases the system behaviour is complicated near the critical point where the transition occurs.


Chaotic System Chaotic Attractor Chaotic Motion Dissipative System Period Doubling Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bambi Hu: Phys.Reports 91, 233 (1982)CrossRefGoogle Scholar
  2. 2.
    M.J. Feigenbaum: J. Stat Phys. 21, 669 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    G. Benettin, L. Galgani, J.M. Strelcyn: Phys.Rev. A14, 2338 (1976) G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn: Meccanica 15, 9, 21 (1980)Google Scholar
  4. 4.
    B.A Huberman, J. Rudnick: Phys.Rev.Lett. 45, 154 (1980)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Y. Ueda: J.Stat.Phys. 20, 181 (1979)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    C. Grebogi, E. Ott, J.A: Yorke: Phys.Rev.Lett. 48, 1507 (1982)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    R.W. Leven, B.P. Koch: Phys.Lett. A86, 71 (1981)ADSGoogle Scholar
  8. 8.
    J.S. Testa, J. Perez, C. Jeffries: Pfys.Rev.Lett. 48, 714 (1982)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    P. Cvitanovic: Acta Phys.Po1on. A65, 203 (1984)MathSciNetGoogle Scholar
  10. 10.
    H. Daido: Phys.Lett. A108, 233 (1985).MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • R. W. Leven
    • 1
  • B. Pompe
    • 1
  1. 1.Sektion Physik/ElektronikErnst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany

Personalised recommendations