A Survey of Replicator Equations

  • Karl Sigmund
Part of the Biomathematics book series (BIOMATHEMATICS, volume 16)

Abstract

What are the units of natural selection? This question has aroused considerable debate in theoretical biology. Suggestions range from pieces of polynucleotides, genes, or gene complexes to individuals, groups, or species. It could be, however, that different answers are correct in different contexts, depending on the scale on which selection acts most decisively. This is somewhat analogous to physics, where the dominant force may be gravitational, electromagnetic, or strong or weak interparticle attractions, depending on the problem.

Keywords

Manifold Recombination Macromolecule Nash Hines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akin, E. (1979) The geometry of population genetics. Lecture Notes In Biomathematics 31 ( Berlin, Heidelberg, and New York: Springer-Verlag ).Google Scholar
  2. Akin, E. (1980) Domination or equilibrium. Math. Biosciences 50: 239–50.MathSciNetMATHCrossRefGoogle Scholar
  3. Akin, E. and Hofbauer, J. (1982) Recurrence of the unfit. Math. Biosciences 61: 51–63.MathSciNetMATHCrossRefGoogle Scholar
  4. Akin, E. and Losert, V. (1984) Evolutionary dynamics of zero-sum games. J. Math. Biology 20: 231–58.MathSciNetMATHCrossRefGoogle Scholar
  5. Amann, E. (1984). Permanence for Catalytic Networks. Dissertation (University of Vienna).Google Scholar
  6. Amann, E. and Hofbauer, J. (1985) Permanence in Lotka—Volterra and replicator equations. Forthcoming.Google Scholar
  7. Arneodo, A., Coullet, P., and Tressor, C. (1980) Occurrence of strange attractors in three-dimensional Volterra equations. Physics Letters 79A: 259–63.MathSciNetCrossRefGoogle Scholar
  8. Bishop, T. and Cannings, C. (1978) A generalized war of attrition. J. Theor. Biology 70: 85–124.MathSciNetCrossRefGoogle Scholar
  9. Bomze, I. (1983) Lotka—Volterra equations and replicator dynamics: a two-dimensional classification. Biol. Cybernetics 48: 2010–11.CrossRefGoogle Scholar
  10. Bomze, I. (1985) Non-cooperative two-person games in biology: symmetric contests, in Peschel (Ed) Lotka-Volterra Approach in Dynamical Systems, Proc. Conf. Wart- bury (Berlin: Akademieverlag ).Google Scholar
  11. Bomze, I., Schuster, P., and Sigmund, K. (1983) The role of Mendelian genetics in strategic models on animal behavior. J. Theor. Biology 101: 19–38.MathSciNetCrossRefGoogle Scholar
  12. de Carvalho, M. (1984) Dynamical Systems and Game Theory. PhD Thesis (University of Warwick).Google Scholar
  13. Coppel, W. (1966) A survey of quadratic systems. J. Diff. Eqns. 2: 293–304.MathSciNetMATHCrossRefGoogle Scholar
  14. Dawkins, R. (1982) The Extended Phenotype ( Oxford and San Francisco: Freeman).Google Scholar
  15. Eigen, M. (1971) Self-organization of matter and the evolution of biological macro-molecules. Die Naturwissenschaften 58: 465–523.CrossRefGoogle Scholar
  16. Eigen, M. and Schuster, P. (1979) The Hypercycle: A Principle of Natural Self- Organization ( Berlin and Heidelberg: Springer-Verlag).Google Scholar
  17. Epstein, M. (1979) Competitive coexistence of self-reproducing macromolecules. J. Theor. Biology 78: 271–98.CrossRefGoogle Scholar
  18. Eshel, I. (1982) Evolutionarily stable strategies and natural selection in Mendelian populations. Theor. Pop. Biol. 21: 204–17.CrossRefGoogle Scholar
  19. Ewens, W.J. (1979) Mathematical Population Genetics (Berlin, Heidelberg, and New York: Springer-Verlag).MATHGoogle Scholar
  20. an der Heiden, U. (1975) On manifolds of equilibria in the selection model for multiple alleles. J. Math. Biol. 1: 321–30.MATHCrossRefGoogle Scholar
  21. Hines, G. (1980) An evolutionarily stable strategy model for randomly mating diploid populations. J. Theor. Biology 87: 379–84.MathSciNetCrossRefGoogle Scholar
  22. Hofbauer, J. (1981a) On the occurrence of limit cycles in the Volterra—Lotka equation. Nonlinear Analysis IMA 5: 1003–7.MathSciNetMATHCrossRefGoogle Scholar
  23. Hofbauer, J. (1981b) A general cooperation theorem for hypercycles. Monatsh. Math. 91: 233–40.MathSciNetMATHCrossRefGoogle Scholar
  24. Hofbauer, J. (1984) A difference equation model for the hypercycle. SIAMJ. Appl. Math. 44: 762–72.MathSciNetMATHCrossRefGoogle Scholar
  25. Hofbauer, J., Schuster, P., and Sigmund, K. (1979) A note on evolutionarily stable strategies and game dynamics. J. Theor. Biology 81: 609–12.MathSciNetCrossRefGoogle Scholar
  26. Hofbauer, J., Schuster, P., Sigmund, K., and Wolff, R. (1980) Dynamical systems under constant organization. Part 2: Homogeneous growth functions of degree 2. SIAM J. Appl. Math. 38: 282–304.MathSciNetMATHCrossRefGoogle Scholar
  27. Hofbauer, J., Schuster, P., and Sigmund, K. (1981) Competition and cooperation in catalytic self-replication. J. Math. Biol. 11: 155–68.MathSciNetMATHCrossRefGoogle Scholar
  28. Hofbauer, J., Schuster, P., and Sigmund, K. (1982) Game dynamics for Mendelian populations. Biol. Cybern. 43: 51–7.MathSciNetMATHCrossRefGoogle Scholar
  29. Hutson, V. and Moran, W. (1982) Persistence of species obeying difference equations. J. Math. Biol. 15: 203–13.MathSciNetMATHCrossRefGoogle Scholar
  30. Hutson, V. and Vickers, C.T. (1983) A criterion for permanent coexistence of species, with an application to a two-prey/one-predator system. Math. Biosci. 63: 253–69.MathSciNetMATHCrossRefGoogle Scholar
  31. Kimura, M. (1958) On the change of population fitness by natural selection. Heredity 12: 145–67.CrossRefGoogle Scholar
  32. Küppers, B.O. (1979) Some remarks on the dynamics of molecular self-organization. Ball. Math. Biol. 41: 803–9.MATHGoogle Scholar
  33. Losert, V. and Akin, E. (1983) Dynamics of games and genes: discrete versus continuous time. J. Math. Biol. 17: 241–51.MathSciNetMATHCrossRefGoogle Scholar
  34. Luce, R. and Raiffa, H. (1957) Games and Decisions ( New York: John Wiley).MATHGoogle Scholar
  35. Maynard Smith, J. (1974) The theory of games and the evolution of animal conflicts. J. Theor. Biology 47: 209–21.CrossRefGoogle Scholar
  36. Maynard Smith, J. (1981) Will a sexual population evolve to an ESS? Amer. Naturalist 177: 1015–8.Google Scholar
  37. Maynard Smith, J. (1982) Evolutionary Game Theory ( Cambridge: Cambridge University Press).Google Scholar
  38. Pollak, E. (1979) Some models of genetic selection. Biometrics 35: 119–37.MathSciNetMATHCrossRefGoogle Scholar
  39. Schuster, P. and Sigmund, K. (1983) Replicator dynamics. J. Theor. Biology 100: 535–8.MathSciNetGoogle Scholar
  40. Schuster, P. and Sigmund, K. (1985) Towards a dynamics of social behavior: strategic and genetic models for the evolution of animal conflicts. J. Soc. Biol. Structures. Forthcoming.Google Scholar
  41. Schuster, P., Sigmund, K., and Wolff, R. (1979) Dynamical systems under constant organization. Part 3: Cooperative and competitive behavior of hypercycles. J. Dijf. Eqns. 32: 357–68.MathSciNetMATHCrossRefGoogle Scholar
  42. Schuster, P., Sigmund, K., and Wolff, R. (1980) Mass action kinetics of self-replication in flow reactors. J. Math. Anal. Appl. 78: 88–112.MathSciNetMATHCrossRefGoogle Scholar
  43. Schuster, P., Sigmund, K., Hofbauer, J., and Wolff, R. (1981) Self-regulation of behavior in animal societies. Part 1: Symmetric contests. Biol. Cybern. 40: 1–8.MathSciNetMATHCrossRefGoogle Scholar
  44. Shahshahani, S. (1979) A new mathematical framework for the study of linkage and selection. Memoirs AMS 211.Google Scholar
  45. Selten, R. (1985) Evolutionary stability in extensive two-person games. Math. Soc. Sciences. Forthcoming.Google Scholar
  46. Sigmund, K. (1985) The maximum principle for replicator equations, in Peschel (Ed) Lotka-Volterra Approach in Dynamical Systems, Proc. Conf. Wartburg (Berlin: Akademie verlag ).Google Scholar
  47. Sigmund, K. and Schuster, P. (1984) Permanence and uninvadability for deterministic population models, in P. Schuster (Ed) Stochastic Phenomena and Chaotic Behavior in Complex Systems ( Berlin, Heidelberg, and New York: Springer- Verlag ).Google Scholar
  48. Taylor, P. and Jonker, L. (1978) Evolutionarily stable strategies and game dynamics. Math. Biosciences 40: 145–56.MathSciNetMATHCrossRefGoogle Scholar
  49. Zeeman, E.C. (1980) Population dynamics from game theory, in Global Theory of Dynamical Systems, Lecture Notes in Mathematics 819 ( Berlin, Heidelberg, and New York: Springer-Verlag ).Google Scholar
  50. Zeeman, E.C. (1981) Dynamics of the evolution of animal conflicts. J. Theor. Biology 89: 249–70.MathSciNetCrossRefGoogle Scholar

Copyright information

© International Institute for Applied Systems Analysis 1986

Authors and Affiliations

  • Karl Sigmund

There are no affiliations available

Personalised recommendations