Advertisement

Computer-Assisted Echographic Tissue Characterization in Tumor Diagnostics

  • G. van Kaick
  • D. Schlaps
  • I. Zuna
  • U. Räth
  • D. Lorenz
  • T. Hirning
  • L. Pickenhan
  • W. J. Lorenz
Conference paper

Abstract

The echographic characterization of tissue is open to three different biophysical approaches:
  1. 1.

    The analysis of the radio-frequency signal (RF-signal)

     
  2. 2.

    The analysis of the video-A signal

     
  3. 3.

    The analysis of the B-scan

     
A hardware-software system for the acquisition and evaluation of ultrasonic data was developed in our institute. This system permitted the quantitative analysis of a series of A-scans by means of distinct statistical parameter sets leading to the differentiation of normal tissue from cirrhotic and metastatic liver [1,3].

Keywords

Diffuse Liver Disease Ultrasonic Data Cation Accuracy Tumor Diagnostics Malignant Liver Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geissler M, Lorenz A, Zabel HJ et al. (1982) A computerized echographic data acquisition and evaluation system for tissue characterization. Proc. World Congress Med. Phys. Biomed. Eng., HamburgGoogle Scholar
  2. 2.
    Hirning T (1984) Quantifizierung und Klassifìzierung echographischer Befunde der Schilddruse nach objektiven Kriterien mittels rechnergestützter Echographie. Thesis, University of HeidelbergGoogle Scholar
  3. 3.
    Lorenz WJ, Bihl H, van Kaick G et al. (1981) Methods of image analysis and enhancement. In: Hill CR, Kratochwil A (eds) Medical ultrasonic images: formation, display, and recording. Excerpta Medica, Amsterdam, pp 69–76Google Scholar
  4. 4.
    Lorenz D, Schlaps D, Zuna I, Hirning T, van Kaick G, Lorenz WJ (1983) Computerunterstützte echographische Analyse von szintigraphisch kalten Knoten der Schilddrüse. In: Kratochwil A et al. (eds) Ultraschalldiagnostik 82. Thieme, Stuttgart, pp 405–406Google Scholar
  5. 5.
    Pickenhan L, Teubner J, Schlaps D, Zuna I, van Kaick G, Junkermann H, Lorenz WJ (1984) Computerunterstützte Analyse der Echotextur von raumfordemden Prozessen der Mamma. In: Lutz H, Reichel L (eds) Ultraschalldiagnostik 83. Thieme, Stuttgart, pp 93–95Google Scholar
  6. 6.
    Räth U, Limberg B, Schlaps D et al. (1985) Diagnostic accuracy of computerized B-scan texture analysis and conventional ultrasonography in diffuse parenchymal and malignant liver disease. JCU 13:87–99Google Scholar
  7. 7.
    Schlaps D (1983) Gewebsdifferenzierung durch Computerechographie-Entwicklung eines Verfahrens zur Texturanalyse des Ultraschall-B-Bildes. Thesis, University of MainzGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • G. van Kaick
    • 1
  • D. Schlaps
  • I. Zuna
  • U. Räth
  • D. Lorenz
  • T. Hirning
  • L. Pickenhan
  • W. J. Lorenz
  1. 1.Abteilung Spezielle onkologische Diagnostik und Therapie, Institut für Nuklearmedizin und onkologische RadiologieDeutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations