Gamma Camera Imaging and Single Probe Detection of Tumors

  • R. Knopp
Conference paper


Two main methods are available for the detection and differentiation of tumors by means of radioactive test substances: 1) scintigraphic imaging and 2) single probe detection. Since the introduction of digital data processing into nuclear medicine in the mid-60s [3, 11, 15] quite a few procedures have been developed for scintigraphy which have opened up important possibilities for tumor diagnosis, particularly in connection with gamma camera computer systems [4]. Such systems have made it possible to assess data in a digital format for subsequent analysis and thus to obtain through image processing methods quantitative information on the uptake and turnover of gamma emitting tracers in suspicious areas.


Semiconductor Detector Scintigraphic Imaging Gamma Camera Image Indium Peak Digital Data Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biersack HJ, Winkler C (1980) Der Einsatz von Halbleiterzählern zur P-32-Diagnostik von Augen- und Hauttumoren. Nuklearmediziner 4(3):359–366Google Scholar
  2. 2.
    Brasch RC et al. (1984) Contrast-enhanced NMR-imaging — Animal studies using Gadolinium-DTPA complex. Am J Roentgenol 142:625–630Google Scholar
  3. 3.
    Brown DW (1964) Digital computer analysis and display of the radioisotope scan. J Nucl Med 5:802Google Scholar
  4. 4.
    Brownell GL et al. (1971) NUMEDICS — A computer system for processing radioisotope data from multiple sources. USAEC Conf 7-10425:51–60Google Scholar
  5. 5.
    Goldenberg DM (1980) An introduction to the radioimmunodetection of cancer. Cancer Res 40:2957–2959PubMedGoogle Scholar
  6. 6.
    Granowska M et al. (1985) Kinetic analysis of radioimmunoscintigraphy, RIS using probability mapping: comparison with multiple biopsy findings in ovarian cancer. European Nuclear Medicine Congress, London, 1985Google Scholar
  7. 7.
    Kolberg T et al. (1974) Präoperative Artdiagnostik hirnorganischer Prozesse mit Hilfe eines Computerprogramms. Acta Neurochir (Wien) 31:23CrossRefGoogle Scholar
  8. 8.
    DeLand FH et al. (1980) Imaging approach in radioimmunodetection. Cancer Res 40:3046–3049PubMedGoogle Scholar
  9. 9.
    Perkins AC et al. (1984) Physical approach for the reduction of dual radionuclide imaging subtraction artifacts in immunoscintigraphy. Nucl Med Comm 5:501–512CrossRefGoogle Scholar
  10. 10.
    Rösler H et al. (1972) Type-specific tumor patterns in cerebral sequential scintigraphy. Neuroradiology 3:144PubMedCrossRefGoogle Scholar
  11. 11.
    Schepers H, Winkler C (1964) An automatic scanning system using a tape perforator and computer techniques. In: Medical Radioisotope Scanning, Wien IAEAGoogle Scholar
  12. 12.
    Takayanagi SI et al. Miniature semiconductor radiation detectors. In: Hine GJ, Sorenson JA (eds) Instrumentation in nuclear medicine. Academic, New York, p 486Google Scholar
  13. 13.
    Virnich H et al. (1975) CEDI-ein Computerprogramm zur präoperativen Artdiagnostik hirnorganischer Prozesse. Methods Inf Med 14:19–25PubMedGoogle Scholar
  14. 14.
    Winkler C (1973) Computer assisted differential diagnosis of human brain lesions. Int Res Comm Syst 16-23-2:12Google Scholar
  15. 15.
    Winkler C (1963) Neue Methoden in der Szintigraphie. In: Atomstrahlung in der Medizin und Technik. München p 137Google Scholar
  16. 16.
    Winkler C (1985) Nuklearmedizinische Tumordiagnostik. In: Diethelm L et al. (eds) Nuklearmedizin. Springer, Berlin Heidelberg New York Tokyo, pp 407–463 (Handbuch der medizinischen Radiologie, vol 15)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • R. Knopp
    • 1
  1. 1.Institut für klinische und experimentelle NuklearmedizinUniversität BonnBonn 1Germany

Personalised recommendations