Skip to main content

Mechanisms Responsible for Radioactive Tracer Uptake in Malignancies

  • Conference paper
Nuclear Medicine in Clinical Oncology

Abstract

Tumors, a collection of cells altered so as to reproduce true to type, represent a growth against which the host can demonstrate no adequate control mechanisms. The tumor cell determines its own activities, irrespective of the biologic rules governing the growth of normal cells. Without this single characteristic, there would be no tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Francis MD, Tofe AJ, Benedict JJ et al. (1979) Imaging the skeletal system. Radio Pharm II. Proceedings Second International Symposium on Radiopharmaceuticals, March 19–22, 1979, Seattle, WA. Society of Nuclear Medicine, New York, pp 603–614

    Google Scholar 

  2. Arnstein NB, Harbert JC, Byrne PJ (1984) Efficacy of bone and liver scanning in breast cancer patients treated with adjuvant chemotherapy. Cancer 54:2243–2247

    Article  PubMed  CAS  Google Scholar 

  3. Rossleigh MA, Lovegrove FTA, Reynolds PM et al. (1984) The assessment of response to therapy of bone metastases in breast cancer. Aust NZ J Med 14:19–22

    Article  CAS  Google Scholar 

  4. Drum DE (1978) Optimizing the clinical value of hepatic scintiphotography. Semin Nucl Med 8:346–357

    Article  PubMed  CAS  Google Scholar 

  5. Drum DE, Beard JM (1976) Scinitgraphic criteria for hepatic metastases from cancer of the colon and breast J Nucl Med 17:677–680

    PubMed  CAS  Google Scholar 

  6. Lin MS, Donati RM (1981) “Mottled” liver scan in giant hepatomegaly due to intrasinusoidal metastasis of small cell lung cancer. Clin Nucl Med 6:496–497

    PubMed  CAS  Google Scholar 

  7. Schenk P, zum Winkel K, Becker J (1966) Die Szintigraphie des parasternalen Lymphsystems. Nucl Med 5:388–396

    Google Scholar 

  8. Ege GN (1976) Internal Mammary Lymphoscintigraphy — the rationale, technique, interpretation, and clinical application. Radiology 118:101–107

    PubMed  CAS  Google Scholar 

  9. Kaplan WD (1983) Iliopelvic Lymphoscintigraphy. Semin Nucl Med 13:42–53

    Article  PubMed  CAS  Google Scholar 

  10. Sullivan DC, Croker BP Jr, Harris CC et al. (1981) Lymphoscintigraphy in malignant melanoma: 99m-Tc antimony sulfur colloid. Am J Roentgenol 137:847–851

    CAS  Google Scholar 

  11. Matsuo S (1974) Studies of the metastasis of breast cancer to lymph nodes — II. Diagnosis of metastasis to internal mammary nodes using radiocolloid. Acta Med Okayama 28:361–371

    PubMed  CAS  Google Scholar 

  12. Kaplan WD, Garnick MB, Richie JP (1983) Iliopelvic radionuclide lymphoscintigraphy in patients with testicular cancer. Radiology 147:231–235

    PubMed  CAS  Google Scholar 

  13. Ege GN, Clark RM (1980) Internal mammary lymphoscintigraphy in the conservative surgical management of breast carcinoma. Clin Radiol 31:559–563

    Article  PubMed  CAS  Google Scholar 

  14. Hoffer P (1980) Gallium: Mechanisms. J Nucl Med 21:282–285

    PubMed  CAS  Google Scholar 

  15. Larson SM (1978) Mechanisms of localization of gallium-67 in tumors. Semin Nucl Med 8:193–203

    Article  PubMed  CAS  Google Scholar 

  16. Hayes RL, Rafter JJ, Byrd BL et al. (1981) Studies of the in-vivo entry of Ga-67 into normal and malignant tissue. J Nucl Med 22:325–332

    PubMed  CAS  Google Scholar 

  17. Swartzendruber DC, Nelson B, Hayes RL (1971) Gallium-67 localization in lysosomallike granules of leukemic and non-leukemic murine tissues. J Natl Cancer Inst 46:941–952

    PubMed  CAS  Google Scholar 

  18. Anderson KC, Leonard RCF, Cannellos GP et al. (1983) High-dose gallium imaging in lymphoma. Am J Med 75:327–331

    Article  PubMed  CAS  Google Scholar 

  19. Ancri D, Basset J-Y, Lonchampt MF et al. (1978) Diagnosis of cerebral lesions by thallium-201. Radiology 128:417–422

    PubMed  CAS  Google Scholar 

  20. Kaplan WD, Takvorian RW, Morris JH et al. (1985) Thallium-201 brain imaging: A comparative study with pathologic correlation. J Nucl Med 26:P75 (abstr.)

    Google Scholar 

  21. Kaplan WD, Ensminger WD, Smith EH et al. (1981) Radionuclide angiography to predict patient response to hepatic artery chemotherapy. Cancer Treat Rep 64:1217–1222

    Google Scholar 

  22. Hatanaka M (1974) Transport of sugars in tumor cell membranes. Biochem Biophys Acta 355:77–104

    PubMed  CAS  Google Scholar 

  23. Weber G: Enzymology in cancer cells. N Engl J Med 296:486–493

    Google Scholar 

  24. Beaney RP (1984) Positron emission tomography in the study of human tumors. Semin Nucl Med 14:324–341

    Article  PubMed  CAS  Google Scholar 

  25. DiChiro G, DeLaPaz RL, Brooks RA et al. (1982) Glucose utilization of cerebral gliomas measured by 18F Fluorodeoxyglucose (18FDG) and positron emission tomography. J Neurol 32:1323–1329

    CAS  Google Scholar 

  26. Weiland DM, Wu JL, Brown LE et al. (1980) Radiolabeled adrenergic neuron blocking agents: adrenomedullary imaging with 131 I iodobenzylguanidine. J Nucl Med 21:349–353

    Google Scholar 

  27. Weiland AM, Brown LE, Tobes MC et al. (1981) Imaging the primate adrenal medulla with I 123 and I 131 meta-iodobenzylguanidine: concise communication. J Nucl Med 22:358–364

    Google Scholar 

  28. Lynn MD, Shapiro B, Sisson JC et al. (1984) Portrayal of pheochromocytomas and normal human adrenal medulla by m-123 I iodobenzylguanidine: concise communication. J Nucl Med 25:436–440

    PubMed  CAS  Google Scholar 

  29. Kimmig B, Brandeis WE, Eisenhut M et al. (1984) Scintigraphy of neuroblastoma with I 131 meta-iodobenzylguanidine: J Nucl Med 25:773–775

    PubMed  CAS  Google Scholar 

  30. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of proven defined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  31. Goldenberg DM, DeLand F, Kim E et al. (1978) Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med 298:1384–1386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaplan, W.D. (1986). Mechanisms Responsible for Radioactive Tracer Uptake in Malignancies. In: Winkler, C. (eds) Nuclear Medicine in Clinical Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70947-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70947-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16164-6

  • Online ISBN: 978-3-642-70947-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics