Skip to main content

Energy Transduction in Anoxygenic Photosynthesis

  • Chapter
Book cover Photosynthesis III

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 19))

Abstract

Thomas (1974) has supposed that a dispassionate extraterrestrial might perceive the Earth as populated by two symbiotic forms. The chloroplasts would be seen as cellular structures built from carbon compounds, ranging from the pro-karyotic cyanobacteria at the simplest level through to those occupying the algae and green plants at the most elaborate. It would be clear that these species were equipped to harness solar energy to “fix” CO2 by reduction to carbohydrate and thence to more elaborate molecules of the cell. Water would be identified as the source of electrons to reduce the CO2, explaining the byproduct, dioxygen, that dominates the Earth’s atmosphere. The partner to this symbiotic pair, the mitochondrion, would be recognized as respiratory bacteria in its simplest, prokaryotic form, through the likes of those found in yeast to those occupying animal and plant cells. The mitochondrion would be seen to utilize the chloroplast-derived, reduced carbon compound material, not only for its own biosynthetic needs but also, in collaboration with O2, as a source of fuel to provide free energy to drive these biosynthetic reactions, reforming CO2 and H2O and completing the cycle. Thus while the mitochondrion is able to capitalize on the photosynthetic industry of the chloroplast, the chloroplast benefits from the CO2 recycling activities of the mitochondrion. The plantmitochondrial systems are outlined as a flow sheet in Fig. 1A and B.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnon DI (1977) Photosynthesis 1950–1975 Changing concepts and perspectives. In: Trebst A, Avron M (eds) Photosynthesis I: Photosynthetic electron transport and phosphorylation. Encyclopedia of plant physiology, vol V. Springer, Berlin Heidelberg New York, pp 8–56

    Google Scholar 

  • Baltscheffsky M, Baltscheffsky H, Boork J (1982) Evolutionary and mechanistic aspects of coupling and phosphorylation in photosynthetic bacteria. In: Barber J (ed) Electron transport and photophosphorylation. Elsevier/North-Holland Biomed Press, Amsterdam New York, pp 249–272

    Google Scholar 

  • Bartsch RG (1978) Cytochromes in the photosynthetic bacteria. In: Clayton RK, Sistrom WR (eds) Plenum, New York London, pp 249–279

    Google Scholar 

  • Blankenship RE, Mancino LJ, Feick R, Fuller RC, Machnicki J, Frank HA, Kirmaier C, Holton D (1984) Primary photochemistry and pigment composition of the reaction centers isolated from the green photosynthetic bacteria Chloroflexus aurantiacus. Proc Natl Acad Sci USA 79:6532–6536

    Google Scholar 

  • Carruthers RP, Yoch DC, Arnon DI (1979) Isolation and characterization of bound iron-sulfur proteins from bacterial photosynthetic membranes. J Biol Chem 252:7561–7467

    Google Scholar 

  • Case GD, Parson WW (1971) Themodynamics of the primary and secondary photochemical reactions in Chr. vinosum. Biochim Biophys Acta 253:187–202

    PubMed  CAS  Google Scholar 

  • Case GD, Parson WW (1973) Shifts of bacteriochlorophyll and carotenoid absorption bands linked to cytochrome c-555 photooxidation in Chr. vinosum. Biochim Biophys Acta 325:441–453

    PubMed  CAS  Google Scholar 

  • Case GD, Parson WW, Thornber JP (1970) Photooxidation of cytochromes in reaction center preparation from Chr. vinosum and Rps. viridis. Biochim Biophys Acta 223:12–128

    Google Scholar 

  • Chance B, Hollunger G (1961) The interaction of energy and electron transfer reactions in mitochondria, vi. The efficiency of the reaction. J Biol Chem 236:1577–1585

    PubMed  CAS  Google Scholar 

  • Cohen Y, Padan E, Shilo M (1975) Facultative bacterial-like photosynthesis in the blue-green alga Oscillatoria limnetica. J Bacteriol 123:855–861

    PubMed  CAS  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Bacteriol Rev 45:pp 316–354

    CAS  Google Scholar 

  • Crofts AR, Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726:149–185

    CAS  Google Scholar 

  • Cross RL (1981) The mechanism and regulation of ATP synthesis by FATPases. Annu Rev Biochem 50:681–714

    PubMed  CAS  Google Scholar 

  • Davidson VL, Knaff DB (1982) The electrochemical proton gradient in the photosynthetic purple sulfur bacterium Chr. vinosum. Photochem Photobiol 36:551–558

    CAS  Google Scholar 

  • DeVault D, Chance B (1966) Studies of photosynthesis using a pulsed laser: Temperature depency of cytochrome oxidation rate in Chr. vinosum evidence for tuneling. Biophys J 6:825–847

    PubMed  CAS  Google Scholar 

  • Dickerson RE (1980) Cytochrome c and evolution of energy metabolism. Sci Am 242 (3) :pp 136–153

    CAS  Google Scholar 

  • Doi M, Takamiya K, Nishimura M (1982) Light and thiosulfate-dependent reduction of nicotinamide adenine nucleotides in whole cells of Chromatium vinosum. Plant Cell Physiol 21. 1015–1022

    Google Scholar 

  • Dutton PL (1971) Oxidation-reduction dependence of the interactions of cytochromes, bacteriochlorophyll and carotenoids at 77 K in chromatophores of Chr. vinosum and Rps. gelatinosa. Biochim Biophys Acta 226:63–80

    PubMed  CAS  Google Scholar 

  • Dutton PL, Prince RC (1978) Reaction center driven cytochrome interactions in electron and proton translocation and energy coupling. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York London, pp 525–570

    Google Scholar 

  • Dutton PL, Kihara T, McCray JA, Thornber JP (1971) Cytochrome c-553 and bacteriochlorophyll interaction at 77 K in chromatophores and a subchromatophore fraction preoperation in Chr. vinosum. Biochim Biophys Acta 226:81–87

    PubMed  CAS  Google Scholar 

  • Evans MCW (1969) Ferredoxin-NAD reductase and the reduction of NAD by Chloro-bium thiosulfatophilum. In: Metzner H (ed) Progress in photosynthesis research, vol III. Laupp, Tübingen, pp 1474–1475

    Google Scholar 

  • Evans MCW, Buchanan BB (1965) Photoreduction of ferredoxin and its use in C02 fixation by a subcellular fraction from a photosynthetic bacterium. Proc Natl Acad Sci USA 53:1420–1425

    PubMed  CAS  Google Scholar 

  • Feher CR, Okamura MY (1984) Structure and function of the reaction center from Rps. sphaeroides. In: Sybesma C (ed) Advances in photosynthesis research, vol II. Nijhoff/Junk, The Hague, pp 155–164

    Google Scholar 

  • Fischer U (1984) Cytochromes and iron sulfur proteins in sulfur metabolism of photo-trophic bacteria. In: Muller A, Krebs B (eds) Sulfur, its significance for chemistry, for the creo-, bio- and cosmosphere and technology. Studies in organic chemistry, vol V. Elsevier, Amsterdam New York Oxford, pp 383–407

    Google Scholar 

  • Freedman JA, LeMasters J J (1984) Thermodynamics of reverse transfer across site I: ATP/2e~ is greater than one. Biochem Biophys Res Commun 125:8–13

    PubMed  CAS  Google Scholar 

  • Fukumori Y, Yamanaka T (1979) A high potential nonheme iron protein (HIPHP)-linked thiosulfate oxidizing enzyme from Chr. vinosum. Curr Microbiol 3:117–120

    CAS  Google Scholar 

  • Fuller RC, Sprague SG, Gest H, Blankenship RE (1985) A unique photosynthetic reaction center from Heliobacterium chlorum. FEBS Lett 182:pp 345–349

    CAS  Google Scholar 

  • Gaffron H (1963) Van Niel’s theory: thirty years after. In: Gest H, San Pietro A, Vernon LP (eds) Bacterial photosynthesis. Antioch, Yellow Springs, OH, pp 3–14

    Google Scholar 

  • Gest H (1963) Metabolic aspects of bacterial photosynthesis. In: Gest H, San Pietro A, Vernon LP (eds) Bacterial photosyntheses. Antioch, Yellow Springs, OH, pp 129–150

    Google Scholar 

  • Gest H (1982) In: Kaplan NO, Robinson A (eds) From cyclotrons to cytochromes. Academic Press, London New York, pp 305–321

    Google Scholar 

  • Gest H (1983) Evolutionary roots of anoxygenic photosynthetic energy conversion. In: Ormerod JG (ed) The photosynthetic bacteria : Anaerobic life in the Light. Blackwell, London Oxford, pp 215–235

    Google Scholar 

  • Gest H, Favinger JL (1983) Arch Microbiol 136:pp 11–16

    CAS  Google Scholar 

  • Gray GO, Knaff DB (1982) The role of a cytochrome c-552 — cytochrome c complex in the oxidation of sulfide in Chr. vinosum. Biochim Biophys Acta 680:290–296

    CAS  Google Scholar 

  • Gromet-Elhanan Z (1977) The electrochemical gradients and energy coupling in photosynthetic bacteria. Trends Biol Sci 2:274–277

    CAS  Google Scholar 

  • Gromet-Elhanan Z, Khananshuili D (1984a) Chemical modification of essential amino-acid residues in the chromatophore F1 -ATPase and its isolated subunit. In: Sybesma C (ed) Advances in photosynthesis research, vol II. Nijhoff/Junk, The Hague, pp 595–598

    Google Scholar 

  • Gromet-Elhanan Z, Khananshuili D (1984b) Characterization of two nucleotide binding sites on the isolated reconstitutively active subunit of the F0-F1. ATP synthase. Biochemistry 23:1022–1028

    CAS  Google Scholar 

  • Grondelle R van, Duysens LNM, Wal van der JA, Wal van der HN (1977) Function and properties of a soluble c-type cytochrome c-551 in secondary photosynthetic electron transport in whole cells of Chr. vinosum as studied with flash spectroscopy. Biochim Biophys Acta 461:188–201

    PubMed  CAS  Google Scholar 

  • Grondelle R van, Duysens LNM, Wal van der HN (1976) Function of three cytochromes in photosynthesis of whole cells of Rh. rubrum as studied by flash spectroscopy: Evidence for two types of reaction centers. Biochim Biophys Acta 449:169–187

    PubMed  Google Scholar 

  • Hellingwerf K, Michels PAM, Dorpema J, Konings WN (1975) Transport of amino acids in membrane vesicles of Rps. sphaeroides by respiratory and cyclic flow. Eur J Biochem 55:397–406

    PubMed  CAS  Google Scholar 

  • Honig BH, Hubbell WL (1983) The stability of salt bridges in membrane proteins. Biophys J 41:203–210

    Google Scholar 

  • Hopfield JJ (1974) Electron transfer between biological molecules by thermally assisted tunneling. Proc Natl Acad Sci USA 71:3640–3644

    PubMed  CAS  Google Scholar 

  • Ingledew WJ, Prince RC (1977) Thermodynamic Resolution of the iron-sulfur center of the succinic dehydrogenase in Rps. sphaeroides. Arch Biochem Biophys 178:303–307

    PubMed  CAS  Google Scholar 

  • Jackson JB, Dutton PL (1973) Kinetic and redox Potentiometrie resolution of the carot-enoid band shifts in Rps. sphaeroides chromatophore. Biochem Biophys Acta 325:102–113

    PubMed  CAS  Google Scholar 

  • Jain MK (1972) The biomolecular lipid membrane. Van Nostrand-Reinhold, Princeton, NJ

    Google Scholar 

  • Jortner J (1980) Dynamics of electron transfer in bacterial photosynthesis. Biochim Biophys Acta 594: pp 193–230

    PubMed  CAS  Google Scholar 

  • Junge W, Jackson JB (1982) The development of electrochemical potential gradients across photosynthetic membranes. In: Govindjee (ed) Photosynthesis: Energy conversion in plants and bacteria, vol I. Academic Press, London New York, pp 589–646

    Google Scholar 

  • Kennel SJ, Kamen MD (1971) Iron-containing proteins in Chr. vinosum II: Purification properties of a cholate-solubilized cytochrome complex. Biochim Biophys Acta 253:153–156

    PubMed  CAS  Google Scholar 

  • Kihara T, Chance B (1969) Cytochrome photooxidation at liquid nitrogen temperatures in photosynthetic bacteria. Biochim Biophys Acta 189:116–124

    PubMed  CAS  Google Scholar 

  • Kihara T, Dutton PL (1970) Light-induced reactions of photosynthetic bacteria: Reaction in whole cells and cell free extracts at liquid nitrogen temperatures. Biochim Biophys Acta 205:196–204

    PubMed  CAS  Google Scholar 

  • Kihara T, McCray JA (1973) Water an cytochrome oxidation-reduction reactions. Biochim Biophys Acta 292:297–309

    PubMed  CAS  Google Scholar 

  • Kleinfeld D, Okamura MY, Feher G (1984) Electron transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state : Evidence for light-induced structural changes. Biochemistry 23:pp 5780–5786

    PubMed  CAS  Google Scholar 

  • Knaff DB (1978) Reducing potentials in the pathway of NAD+ reduction. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York London, pp 629–640

    Google Scholar 

  • Knaff DB, Buchanon BB (1975) Cytochrome b and photosynthetic sulfur bacteria. Bio-chim Biophys Acta 376:549–560

    CAS  Google Scholar 

  • Knaff DB, Carr JW (1979) The energy linked carotenoid band shift in Chr. vinosum. Arch Biochem Biophys 193:379–384d

    PubMed  CAS  Google Scholar 

  • Knaff DB, Malkin R (1976) Iron sulfur proteins of the green photosynthetic bacterium Chlorobium. Biochim Biophys Acta 430:244–252

    PubMed  CAS  Google Scholar 

  • Loach PA, Parkes PS, Bustemante P (1984) Regulation of photosynthetic unit structure in R. rubrum whole cells. In: Sybesma C (ed) Advances in photosynthesis research. Nijhoff/Junk, The Hague, pp 189–197

    Google Scholar 

  • Malkin R, Chain RK, Kraichoke S, Knaff DB (1981) Studies of the function of the membrane-bound iron-sulfur centers of the photosynthetic bacterium Chromatium vinosum. Biochim Biophys Acta 637:88–95

    CAS  Google Scholar 

  • McCarty RE, Carmeli C (1982) Proton translocating ATPases of photosynthetic membranes. In: Govindjee (ed) Photosynthesis: Energy conversion by plants and bacteria, vol I. Academic Press, London New York, pp 647–695

    Google Scholar 

  • Michels PAM, Konings WN (1978) The electrochemical proton gradient generated by light im membrane vesicles and chromatophores from Rps. sphaeroides. Eur J Biochem 85:147–155

    PubMed  CAS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Glynn Res, Bodmin, Cornwall

    Google Scholar 

  • Mitchell P (1968) Chemiosmotic coupling and energy transduction. Glynn Res, Bodmin, Cornwall

    Google Scholar 

  • Mitchell P (1975) Proton motive redox mechanism of the cytochrome bc1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett 56:1–6

    PubMed  CAS  Google Scholar 

  • Morel A, Smith RC (1974) Relation between total quanta and total energy for aquatic photosynthesis. Limnol Oceanogr 19:591–600

    Google Scholar 

  • Niel van CB (1931) On the morphology and physiology of the purple and green sulfur bacteria. Arch Microbiol 3:1–112

    Google Scholar 

  • Niel van CB (1935) Photosynthesis of bacteria. Cold Spring Harbor Symp Quant Biol 3:138

    Google Scholar 

  • Ohnishi T, Salerno JC (1982) In: Spiro TG (ed) Iron-sulfur proteins, vol 7. Wiley, New York, pp 285–327

    Google Scholar 

  • Okamura MY, Feher G, Nelson N (1982) Reaction centers. In: Govindjee (ed) Photosynthesis : Energy conversion in plants and bacteria. Academic Press, London New York, pp 195–272

    Google Scholar 

  • O’Keefe DP (1983) Sites of cytochrome b-563 reduction and the mode of action of DNP-INT and DBMIB in the chloroplast cytochrome b563-f complex. FEBS Lett 162:349–354

    Google Scholar 

  • Olson JM, Prince RC, Brune DC (1976) Reaction center complexes from green bacteria. Brookhaven Symp Biol 28:238–246

    PubMed  Google Scholar 

  • Packham NK, Berriman JA, Jackson JB (1978) The charging capacitance of the chromatophore membrane. FEBS Lett 89:205–210

    PubMed  CAS  Google Scholar 

  • Packham NK, Muller P, Dutton PL (1982) Photoelectric currents across planar bilayer membranes containing bacterial reaction center response under condition of single electron turnover. Biophys J 37:465–473

    PubMed  CAS  Google Scholar 

  • Petty KM, Jackson JB (1979a) Two protons are transferred per ATP synthesized after flush activation of chromatophores from photosynthetic bacteria. FEBS Lett 97:pp 367–372

    CAS  Google Scholar 

  • Petty KM, Jackson JB (1979b) Correlation between ATP synthesis and the decay of the carotenoid bandshift after single turnover flash activation of chromatophores from Rps. capslata. Biochim Biophys Acta 547 :pp 463–473

    PubMed  CAS  Google Scholar 

  • Petty KM, Jackson JB (1979c) Kinetic factors limiting ATP synthesis by chromatophores exposed to short flashes. Biochim Biophys Acta 547:474–483

    PubMed  CAS  Google Scholar 

  • Pfennig N (1978) General physiology and ecology of photo synthetic bacteria. In: Sistrom WR, Clayton RK (eds) The photosynthetic bacteria. Plenum, New York London, pp 3–18

    Google Scholar 

  • Pierson BK, Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus. Proc Natl Acad Sci USA 80:80–84

    PubMed  CAS  Google Scholar 

  • Prince RC (1978) The reaction center and associated cytochromes of T. pfennigii: Their thermodynamic and spectroscopic properties and their possible location within the photosynthetic membrane. Biochim Biophys Acta 501:195–201

    PubMed  CAS  Google Scholar 

  • Prince RC, Dutton PL (1978) Protonation and the reducing potential of the primary electron acceptor. In: Sistrom WR, Clayton RK (eds) The photosynthetic bacteria. Plenum, New York London, pp 439–453

    Google Scholar 

  • Prince RC, Leigh JS, Dutton PL (1976) Thermodynamic properties of the reaction center of Rps. viridis in vivo.

    Google Scholar 

  • Prince RC, Dutton PL, Clayton BJ, Clayton RK (1978) Properties of the reaction center of Rps. gelatinosa in situ and in a detergent solubilized form. Biochim Biophys Acta 502:pp 354–358

    PubMed  CAS  Google Scholar 

  • Prince RC, O’Keefe DP, Dutton PL (1982) The organization of the cyclic electron tranfer system in bacterial membranes: is this the hardware of a chemiosmotic system? In: Barber J (ed) Topics in photosynthesis vol 4. Elsevier, Amsterdam New York Oxford, pp 197–248

    Google Scholar 

  • Rich P (1984) Electron proton transfers through quinones and cytochrome be complexes. Biochim Biophys Acta 768:53–79

    PubMed  CAS  Google Scholar 

  • Robertson DE, Giangiacomo KM, DeVries J, Moser CC, Dutton PL (1984a) Two distinct quinone-modulated modes of antimycin sensitive cytochrome b reduction in the cytochrome bc1 complex. FEBS Lett 178:343–350

    PubMed  CAS  Google Scholar 

  • Robertson DE, Prince RC, Bowyer JR, Matsuura K, Dutton PL, Ohnishi T (1984b) Thermodynamic properties of the semiquinone and its binding site in ubiquinonol cytochrome c(c 2) oxidoreductase of respiratory and photosynthetic systems. J Biol Chem 259:1758–1763

    PubMed  CAS  Google Scholar 

  • Schmitt W, Schleifer C, Knobloch K (1981) The enzymatic system, Thiosulfate: Cytochrome c oxidoreductase from phototrophically grown Chr. vinosum. Arch Microbiol 130:334–338

    CAS  Google Scholar 

  • Shahak Y, Crowther D, Hind G (1981) The involvement of ferredoxin-NADP + reductase in cyclic electron transport in chloroplasts. Biochim Biophys Acta 636:234–243

    PubMed  CAS  Google Scholar 

  • Shill DA, Wood PM (1984) A role for cytochrome c 2 in Rps. viridis. Biochim Biophys Acta 764:pp 1–7

    CAS  Google Scholar 

  • Shioi Y, Takamiya K, Nishinura M (1976) Isolation and same properties of NAD reductase of the green photosynthetic bacterium Prosthecochloris aesturii. J Biochim (Tokyo) 79:361–371

    CAS  Google Scholar 

  • Straley SC, Parson WW, Mauzerall DC, Clayton RK (1973) Pigment content and molar extinction coefficients of the photochemical reaction center from Rps. sphaeroides. Biochim Biophys Acta 305:597–609

    PubMed  CAS  Google Scholar 

  • Takamiya K, Dutton PL (1977) The influence of transmembrane potentials of the redox equilibrium between cytochrome c 2 and the reaction center in Rps. sphaeroides chromatophores. FEBS Lett 80:279–284

    PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Thekaekara MP, Drummond AJ (1971) Standard values for the solar constant and spectral components. Nature 229:6–9

    Google Scholar 

  • Thomas L (1974) The lives of a cell: Notes of a biology watcher. Bantam Books, New York

    Google Scholar 

  • Thornber JP (1970) Photochemical reactions of purple bacteria as revealed by three spectrally different caroteno-bacteriochlorophyll-protein complexes isolated from Chr. vinosum. Photochem Photobiol 172:351–354

    Google Scholar 

  • Thornber JP, Olson JM, Williams DM, Clayton ML (1969) Isolation of the reaction center from Rps. viridis. Biochim Biophys Acta 447–467

    Google Scholar 

  • Tiede DM, Prince RC, Dutton PL (1976) EPR and optical spectroscopic properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chr. vinosum. Biochim Biophys Acta 449:447–467

    PubMed  CAS  Google Scholar 

  • Tiede DM, Leigh JS, Dutton PL (1978) Structural organization of the Chr. vinosum reaction center associated ocytochromes. Biochim Biophys Acta 503:524–544

    PubMed  CAS  Google Scholar 

  • Trüper HG, Fischer U (1982) Anaerobic oxidation of sulfur compounds as electron donors for bacteria. Philos Trans R Soc London Ser B 298:529–542

    Google Scholar 

  • Trüper HG, Pfennig N (1978) Taxonomy of rhodospirillales. In: Sistrom WR, Clayton RK (eds) The photosynthetic bacteria. Plenum, New York London, pp 19–27

    Google Scholar 

  • Vermeglio A (1977) Secondary electron transfer reaction centers of Rhodopseudomonas sphaeroides: Out of phase peroidicity of two for the formation of ubisemiquinone and fully reduced quinone. Biochim Biophys Acta 459:516–524

    PubMed  CAS  Google Scholar 

  • Warshel A, Russel ST, Churg AK (1984) Macroscopic models for studies of electrostatic interactions in proteins: Limitations and applicability. Proc Natl Acad Sci USA 81 :pp 4785–4789

    PubMed  CAS  Google Scholar 

  • Westerhoff HV, Melandri BA, Venturoli G, Azzone GF, Kell DB (1984 a) Mosaic pro-tonic coupling hypothesis for free-energy transaction. FEBS Lett 165:1–5

    PubMed  CAS  Google Scholar 

  • Westerhoff HV, Melandri BA, Venturoli G, Azzoni GF, Kell DB (1984b) A mininal hypothesis for membrane linked free energy transduction. The role of independent, small coupling units. Biochim Biophys Acta 768:257–292

    PubMed  CAS  Google Scholar 

  • Wikstrom M, Saraste M (1984) The mitochondrial respiratory chain in bioenergetics. In: Ernster L (ed) Bioenergetics. Elsevier, Amsterdam New York Oxford, pp 49–79

    Google Scholar 

  • Wraight CA (1977) Electron acceptors of photosynthetic bacterial reaction centers: Direct observation of oscillatory behavior suggesting two closely equivalent quinones. Biochim Biophys Acta 459:525–531

    PubMed  CAS  Google Scholar 

  • Wraight CA (1982) Current attitudes in photosynthesis research. In: Govindjee (ed) Photosynthesis : Energy conversion by plants and bacteria. Academic Press, London New York, pp 17–61

    Google Scholar 

  • Youvan DC, Marrs BL (1984) Molecular genetics and the light reactions of photosynthesis. Cell 39, pp 1–3

    PubMed  CAS  Google Scholar 

  • Zebrower M, Loach PA (1981) The role of Mg++ in the cooperative asociation of photoreceptor complexes in R. rubrum, in Energy coupling in photosynthesis. Selman, Selman-Peimer (eds) Energy coupling in photosynthesis. Elsevier/North-Holland, Biomed Press, Amsterdam New York, pp 333–340

    Google Scholar 

  • Zebrower M, Loach PA (1982) Efficiency of light-driven metabolite transport in the photosynthetic bacterium R. rubrum. J Bacteriol 150:1322–1328

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dutton, P.L. (1986). Energy Transduction in Anoxygenic Photosynthesis. In: Staehelin, L.A., Arntzen, C.J. (eds) Photosynthesis III. Encyclopedia of Plant Physiology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70936-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70936-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70938-8

  • Online ISBN: 978-3-642-70936-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics