Skip to main content

Glucagon Conformation in Different Environments: Implications for Molecular Recognition

  • Conference paper
Design and Synthesis of Organic Molecules Based on Molecular Recognition
  • 77 Accesses

Abstract

Glucagon is a hormone which consists of a linear polypeptide chain of 29 amino acid residues and has a molecular weight of 3500. Early studies by circular dichroism and other physical-chemical techniques indicated a pronounced tendency of this polypeptide to adopt different spatial structures in different environments. For example, for monometric glucagon in aqueous solution a flexible “random coil” structure was indicated [1], and for self-aggregated glucagon in aqueous solution it was shown that it could adopt either an α-helical [2] or a β-sheet [3] secondary structure and that the species formed depended critically on the peptide concentration [4]. Furthermore, interactions with lipids and detergents were also found to induce changes of the glucagon conformation [5–7]. More recently, detailed descriptions based on many-parameter techniques were obtained for glucagon conformations in three different environments, i.e. in single crystals, in aqueous solution and in the lipid-water interphase near the surface of dodecylphosphocholine (DPC) micelles. The present paper describes some implications for studies of the mechanism of action of glucagon which result from comparison of these three molecular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Panijpan, B. and Gratzer, W. B. (1974) Eur. J. Biochem. 45, 547–553

    Article  CAS  Google Scholar 

  2. Gratzer, W. B., Bailey, E. and Beaver, G. H. (1967) Biochem. Biophys. Res. Commun. 28, 914–919

    Google Scholar 

  3. Epand, R. M. (1971) Can. J. Biochem. 49, 166–169

    CAS  Google Scholar 

  4. Wagman, M. E., Dobson, C. M. and Karplus, M. (1980) FEBS Lett. 119, 256–270

    Article  Google Scholar 

  5. Schneider, A. B. and Edelhoch, H. (1972) J. Biol. Chem. 247, 4986–4991

    Google Scholar 

  6. Epand, R. M., Jones, A. J. S. and Schreier, S. (1977) Biochim. Biophys. Acta 491, 296–304

    Google Scholar 

  7. Bosch, C., Brown, L. R. and Wüthrich, K. (1980) Biochim. Biophys. Acta 603, 298–312

    Google Scholar 

  8. Sasaki, K., Dockevill, S., Ackmiak, D. A., Tickle, I. J. and Blundell, T. L. (1975) Nature 257, 751–757

    Article  CAS  Google Scholar 

  9. Bosch, C., Bundi, A., Oppliger, M. and Wüthrich, K. (1978) Eur. J. Biochem. 91, 204–214

    Google Scholar 

  10. Wider, G., Lee, K. H. and Wüthrich, K. (1982) J. Mol. Biol. 155, 367–388

    Google Scholar 

  11. Braun, W., Wider, G., Lee, K. H. and Wüthrich, K. (1983) J. Mol. Biol. 169, 921–948

    Google Scholar 

  12. Pohl, S. L., Birnbaum, L. and Rodbell, M. (1969) Science 164, 566–569

    Article  CAS  Google Scholar 

  13. Rubalcava, B. and Rodbell, M. (1973) J. Biol. Chem. 248, 3831–3837

    Google Scholar 

  14. Blundell, T. L. and Wood, S. (1982) Ann. Rev. Biochem. 51, 123–154

    Google Scholar 

  15. Wright, D. E. and Rodbell, M. (1979) J. Biol. Chem. 254, 268–269

    Google Scholar 

  16. Rodbell, M., Birnbaumer, L., Pohl, S. L. and Sundby, F. (1971) Proc. Natl. Acad. Sei. USA 68, 909–913

    Google Scholar 

  17. Carrey, E. A. and Epand, R. M. (1983) Int. J. Peptide Protein Res. 22, 362–370

    Article  CAS  Google Scholar 

  18. Brown, L. R. (1979) Biochim. Biophys. Acta 557, 135–148

    Google Scholar 

  19. Wüthrich, K., Wider, G., Wagner, G. and Braun, W. (1982) J. Mol. Biol. 155, 311–319

    Google Scholar 

  20. Brown, L. R., Bosch, C. and Wüthrich, K. (1981) Biochim. Biophys. Acta 642, 296–312

    Google Scholar 

  21. Brown, L. R., Braun, W., Anil Kumar and Wüthrich, K. (1982) Biophys. J. 37, 319–328

    Article  CAS  Google Scholar 

  22. Wüthrich, K., Bosch, C. and Brown, L. R. (1980) Biochem. Biophys. Res. Commun. 95, 1504–1509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wüthrich, K. (1986). Glucagon Conformation in Different Environments: Implications for Molecular Recognition. In: Van Binst, G. (eds) Design and Synthesis of Organic Molecules Based on Molecular Recognition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70926-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70926-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70928-9

  • Online ISBN: 978-3-642-70926-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics