On Information Processing in the Cat’s Visual Cortex

  • W. Von Seelen
  • H. A. Mallot
  • G. Krone
  • H. Dinse
Conference paper

Abstract

We assume that the visual system serves for orientation in space, recognition of objects and the interpretation of scenes and scene sequences. This task breaks up into a series of partially interdependent subproblems which are solved by some 13–15 usually retinotopically organized areas. So far it has not been possible to correlate functions and areas unequivocally. One reason for this could be the inadequacy of the questions posed as a basis for experiments. However, we think it more likely that correlating a function with an area is, as a rule, inadmissible since the degree of the coupling in the whole system does not permit a simple divsion. Rather the type and degree of coupling determine the separation or integration of “elementary units”. It follows that co-operation between subsystems is an essential aspect. The data available to us from neurophysiological, neuroanatomic and behavioral physiological findings is insufficient to analyse such a system: they ensure neither the complete observability nor the complete controllability of the systems. So one is forced to use model comparison for analysis. Depending on the type of data, we use three models which complement each other to order the data and predict results which can be experimentally verified.

Keywords

Retina Neurol Convolution Lution Cross Correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Best J, Dinse HRO (1984) Laminar dependent visual information processing in the cat’s area 17. Neurosci Lett Suppl 18:S76Google Scholar
  2. Braitenberg V (1981) Anatomical basis for divergence, convergence, and integration in the cerebral cortex. In: Grastyán E, Molnár P (eds) Adv Physiol Sci, vol 16. Pergamon Press, Oxford New York, pp 411–419Google Scholar
  3. Brönnimann R, Dinse HRO (1981) Effects of velocity, direction and intensity on hypercomplex cells in the cat’s area 18. Neurosci Lett Suppl 7:S147Google Scholar
  4. Campbell FW, Maffei L, Piccolino M (1973) The contrast sensitivity of the cat. J Physiol (London) 229:719–731Google Scholar
  5. Dinse HRO, Best J (1984) Receptive field organization of the cat’s visual cortex exhibit strong spatiotemporal interaction. Neurosci Lett Suppl 18:S75Google Scholar
  6. Dinse HRO, Seelen W von (1981) On the function of cell systems in area 18, Parts I and II. Biol Cybern 41:47–69PubMedCrossRefGoogle Scholar
  7. Fischer B (1973) Overlap of receptive field centers and representation of the visual field in the cat’s optic tract. Vision Res 13:2113–2120PubMedCrossRefGoogle Scholar
  8. Gilbert CD (1977) Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol (London) 268:391–421Google Scholar
  9. Krause F, Eckhorn R (1983) Receptive fields for motion stimuli for different types of cat visual neurons. Neurosci Lett Suppl 14:S209Google Scholar
  10. Krone G, Kunz D, Seelen W von (1983) On the analysis of the cat’s pattern recognition system. Biol Cybern 48:115–124PubMedCrossRefGoogle Scholar
  11. Krone G, Mallot HA, Schüz A, Palm G (1986) Spatiotemporal receptive fields: A dynamical model derived from cortical architectonics. Proc Roy Soc Lond B (in press)Google Scholar
  12. Krüger K, Heitländer-Fansa H, Dinse HRO, Berlucchi G (1986) Detection performance of cats lacking areas 17 and 18: A behavioral approach to analyse pattern recognition deficits. Exp Brain Res (in press)Google Scholar
  13. Mallot HA (1985) An overall description of retinotopic mapping in the cat’s visual cortex areas 17, 18, and 19. Biol Cybern 52:45–51PubMedCrossRefGoogle Scholar
  14. Malpeli JG, Baker FH (1975) The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. J Comp Neurol 161:569–594PubMedCrossRefGoogle Scholar
  15. Marko H (1969) Die Systemtheorie der homogenen Schichten. I. Mathematische Grundlagen. Kybernetik 5:221–240CrossRefGoogle Scholar
  16. Nothdurft HC (1983) The influence of stimulus velocity on orientation tuning of striate cortex cells in cat. Neurosci Lett Suppl 14:S263Google Scholar
  17. Payne BR, Berman N (1983) Functional organization of neurons in cat striate cortex: Variations in preferred orientation and orientation selectivity with receptive-field type, ocular dominance, and location in visual-field map. J Neurophysiol 49:1051–1072PubMedGoogle Scholar
  18. Sawchuk AA (1974) Space-variant image restoration by coordinate transformations. J Opt Soc Am 64:138–144CrossRefGoogle Scholar
  19. Seelen W von (1968) Informationsverarbeitung in homogenen Netzen von Neuronenmodellen. Kybernetik 5:181–194CrossRefGoogle Scholar
  20. Türke B (1981) Analysis of pattern recognition by man using detection experiments. J Math Biol 13:47–65PubMedCrossRefGoogle Scholar
  21. Tusa RJ, Rosenquist AC, Palmer LA (1979) Retinotopic organization of areas 18 and 19 in the cat. J Comp Neurol 185:657–678PubMedCrossRefGoogle Scholar
  22. Wilson HR, Cowan JD (1973) A mathematical theory of functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. Von Seelen
  • H. A. Mallot
  • G. Krone
  • H. Dinse
    • 1
  1. 1.Institut für Zoologie III (Biophysik)Johannes Gutenberg-UniversitätMainzGermany

Personalised recommendations