Advertisement

Klinische Anwendung der bildgebenden diagnostischen Verfahren im Rahmen von Herz- und Kreislauferkrankungen

  • W. Bleifeld
  • C. Nienaber
  • M. Schlüter

Zusammenfassung

Das Herz-Kreislauf-System hat im Organismus die Aufgabe, Sauerstoff sowie für den Stoffwechsel notwendige Substanzen zu den Körperzellen zu bringen und Produkte des intermediären Stoffwechsels abzutransportieren. Im wesentlichen besteht es aus 3 Komponenten: dem Herz als Pumpe, dem gesamten Gefäßsystem einschließlich der Kapillaren sowie einem Regelsystem (Bleifeld u. Hamm, im Druck). Damit ist zwar grob umschrieben, auf welche „Organe“ sich die Anwendung bildgebender Verfahren prinzipiell konzentriert. Von Bedeutung ist daneben, sich klarzumachen, nach welchen Größen man dabei suchen sollte. Unter Berücksichtigung gegenwärtiger und zukünftiger technologischer Möglichkeiten hängt davon nämlich die Ausrichtung der technischen, der biomedizinischen Grundlagen- sowie der klinischen Forschung ab.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bleifeld W, Hamm CW (in Druck) Pathophysiologic des Herz-Kreislaufsystemes. In: Grosse-Brockhoff F (Hrsg) Pathophysiologic. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  2. Bottomley PA, Hart HR, Edelstein WA et al. (1984) Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 tesla. Radiology 150: 441–446PubMedGoogle Scholar
  3. Boucher CA, Okade RD, Pohost GM (1980) Current status of radionuclide imaging in valvular heart disease. Am J Cardiol 46: 1153PubMedCrossRefGoogle Scholar
  4. Bürsch JH, Brennecke R, Heintzen PH (1982) Digital angiography. Pract Cardiol 8: 131–142Google Scholar
  5. DeBoer LMV, Inwall JS, Kloner RA, Braunwald E (1980) Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci USA 77: 5471–5474PubMedCrossRefGoogle Scholar
  6. Edler J, Hertz CH (1954) The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. Kungl Fysiogr Sallshapet Lund Förhandl 5: 24Google Scholar
  7. Effert S (1959) Der derzeitige Stand der Ultraschallkardiographie. Arch Kreislaufforsch 30: 213PubMedCrossRefGoogle Scholar
  8. Emanuel R, Ross K (1967) Pulmonary hypertension in rheumatic heart disease. Prog Cardiovasc Dis 9: 401PubMedCrossRefGoogle Scholar
  9. Feigenbaum H (1980) Echocardiography. Lea amp; Febiger, PhiladelphiaGoogle Scholar
  10. Frazin L, Talano JV, Stephanides L, Loeb HS, Kopel L, Gunnar RM (1976) Esophageal echocardiography. Circulation 54: 102–108PubMedGoogle Scholar
  11. Gadian D, Ross B, Bore P et al. (1981) Examination of a myopathy by phosphorus nuclear magnetic resonance. Lancet II: 774–775Google Scholar
  12. Gellmann EM, Smith JL, Beecher D, Ludbrook PA, Ter-Pogossian MM, Sobel BE (1983) Altered regional myocardial metabolism in congestive cardiomyopathy detected by positron tomography. Am J Med 74: 773–785CrossRefGoogle Scholar
  13. Goldberg HL, Borer JS, Moses JW, Fisher J, Cohen B, Skelly NT (1983) Digital subtraction intravenous left ventricular angiography: comparison with conventional intraventricular angiography. J Am Coll Cardiol 1: 858–862PubMedCrossRefGoogle Scholar
  14. Gould KL, Schelbert HR, Phelps ME, Hoffman EJ (1979) Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilation. V. Detection of 47 percent diameter coronary stenosis with intravenous nitrogen-13 ammonia and emission-computed transaxial tomography in intact dogs. Am J Cardiol 43: 200–208PubMedCrossRefGoogle Scholar
  15. Hanrath P, Bleifeld W, Kupper W, Krebs W, Effert S (1977) Möglichkeiten einer linksventrikulären Funktionsanalyse aus simultaner echokardiographischer und LV-Druckregistrierung. Z Kardiol 4: 66Google Scholar
  16. Hanrath P, Kremer P, Langenstein BA, Matsumoto M, Bleifeld W (1981) Transösophageale Echokardiographie. Ein neues Verfahren zur dynamischen Ventrikelfunktionsanalyse. Dtsch Med Wochenschr 106: 523–525Google Scholar
  17. Hanrath P, Schlüter M, Langenstein BA, Polster J, Engel S, Kremer P, Krebber HJ (1983) Detection of ostium secundum atrial septal defects by transesophageal cross-sectional echocardiography. Br Heart J 49: 350–358PubMedCrossRefGoogle Scholar
  18. Heintzen PH, Brennecke R (eds) (1983) Digital imaging in cardiovascular radiology. Thieme, StuttgartGoogle Scholar
  19. Higgins CB, Lanzer B, Stark D, Botvinik E, Schiller NB, Lipton MJ, Crooks LE, Kaufman L (1985) Assessment of cardiac anatomy using nuclear magnetic resonance imaging. J Am Coll Cardiol 5: 775CrossRefGoogle Scholar
  20. Hinrichs A, Kremer P, Schlüter M, Roewer N, Schmiegel W, Markworth P, Hanrath P (1983) Transoesophagale zweidimensionale Echokardiographie bei maschinell beatmeten Patienten auf der Intensivstation (Abstr). Z Kardiol 72 (Suppl 2): 20Google Scholar
  21. Kennedy JW et al. (1969) Quantitative angiocardiography. III. Relationships of left ventricular pressure, volume, and mass in aortic valve disease. Circulation 38: 838Google Scholar
  22. Kennedy JW et al. (1970) Quantitative angiocardiography. IV. Relationship of left atrial and ventricular pressure and volume in mitral valve disease. Circulation 41: 817PubMedGoogle Scholar
  23. Kremer P, Calahan M, Beaupre P, Schröder E, Hanrath P, Heinrich H, Ahnefeld FW, Bleifeld W, Hamilton W (1985) Intraoperative Überwachung mittels transoesophagealer zweidimensionaler Echokardiographie. Anaesthesist 34: 111–117PubMedGoogle Scholar
  24. Krivokapich J, Huang SC, Phelps ME et al. (1982) Estimation od rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose. Am J Physiol 238: E69–82Google Scholar
  25. Kruger RA, Mistretta CA, Lancaster J et al. (1978) A digital videoprocessor for real time x-ray subtraction imaging. Optic Eng 17: 652–657Google Scholar
  26. Mancini GBJ, Hodgson JMB, Legrand V, Bates ER, Averon FM, LeFree MT, Smith JS, Beavmann GB, Vogel RA (1985) Quantitative assessment of global and regional left ventricular function with low-contrast dose digital subtraction ventriculography. Chest 87: 598PubMedCrossRefGoogle Scholar
  27. Mauser M, Hoffmeister HM, Nienaber C, Schaper W (1985) Influence of Ribose, Adenosine and AICAR on the rate of myocardial Adenosine Triphosphate synthesis during reperfusion after coronary artery occlusion in the dog. Circ Res 56: 220–230Google Scholar
  28. Moodie DS (1985) Assessing cardiac anatomy with digital substraction angiography. J Am Coll Cardiol 5: 48CrossRefGoogle Scholar
  29. Neurohr KJ, Gollin G, Barrett EJ, Shulman RG (1984a) In vivo 31-P NMR studies of myocardial high-energy phosphate metabolism during anoxia and recovery ( Abstr ). Mag Res Med 1: 215–216Google Scholar
  30. Neurohr KJ, Gollin G, Barrett EJ, Rothman DL, Shulman RG (1984b) In vivo carbon-13 nuclear magnetic resonance studies of heart metabolism ( Abstr ). Mag Res Med 1: 214–215Google Scholar
  31. Newman RJ, Bore PJ, Chan L et al. (1982) Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy. Br Med J 284: 1072–1074CrossRefGoogle Scholar
  32. Nienaber C, Mauser M, Podzuweit T, Schaper W (1982) Postischemic infusion of AICAR increases myocardial adenine nucleotides during reperfusion - Comparison with ribose. Criculation 66: 11–331Google Scholar
  33. Nienaber C, Holzlöhner V, Schröder E, Fritsch T, Schaper W, Bleifeld W (1985) Kontrastechokar- diographischer Nachweis von simultanen Perfusions- und Kontraktionsstörungen in akuter Ischämie. Z Kardiol 74: 12Google Scholar
  34. Nienaber CA, Spielmann RP, Salge D, Montz R (1985) Dipyridamole- 201Thallium SPECT imaging to detect ischemia at a distance after acute myocardial infarction. Circulation 72: 111–136Google Scholar
  35. Nomura H, Bergmann SR, Fox KAA, McElvany KD, Welch MJ, Sobel BE (1982) Myocardial fatty acid metabolism quantified externally with 11C palmitate (Abstr). Circulation 66 (Suppl II): II–147Google Scholar
  36. O’Connell JB, Henkin RE, Robinson JA, Subramanian R, Path MRC, Scanlon PJ, Gumor RM (1984) Gallium-67 imaging in patients with dilated cardiomyopathy and biopsy-proven myocarditis. Circulation 70 1: 58PubMedCrossRefGoogle Scholar
  37. Omoto R, Yokote Y, Takomoto S, Kyo S, Ueda K, Asano H, Namekawa K, Kawai C, Kondo Y, Koyano A (1984) The development of real-time two-dimensional Doppler echocardiography and its clinical significance in acquired valvular diseases. Jpn Heart J 25: 325–340PubMedCrossRefGoogle Scholar
  38. Osbakken M, Briggs RW (1984) Nuclear magnetic resonance: theory and review of cardiac applications. Am Heart J 108: 574–590PubMedCrossRefGoogle Scholar
  39. Rachle ME, Larson KB, Phelps Me et al. (1975) In vivo measurement of brain glucose transport and metabolism employing nC-glucose. Am J Physiol 228: 1936–1948Google Scholar
  40. Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR (1982) Positron tomography with deoxyglucose for estimating local myocardial metabolism. J Nucl Med 23: 577–586PubMedGoogle Scholar
  41. Ross BD, Radda GK, Gadian DG, Rocker G, Esiri M, Falconer-Smith J (1981) Examination of a case of suspected McArdle’s syndrome by 31P nuclear magnetic resonance. N Engl J Med 304: 1338–1342PubMedCrossRefGoogle Scholar
  42. Ross J Jr (1981) Left ventricular function and the timing of surgical treatment in valvular heart disease. Ann Intern Med 94: 498PubMedGoogle Scholar
  43. Sahn DJ (1982) Applications of two-dimensional echocardiography during open heart surgery in humans for evaluation of acquired and coronary heart disease. In: Hanrath P, Bleifeld W, Souquet J (eds) Cardiovascular diagnosis by ultrasound - Transesophageal, computerized, contrast, Dopplerechocardiography. Nijhoff M, The Hague Boston LondonGoogle Scholar
  44. Schelbert HR, Wisenberg G, Phelps ME et al. (1982) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic vasodilation. VI. Detection of coronary artery disease in human being with intravenous N-13 Ammonia and Positron computed tomography. Am J Cardiol 49: 1197–1207PubMedCrossRefGoogle Scholar
  45. Schlüter M (1985) Physikalische Voraussetzungen der Doppler-echokardiographischen Bestimmung des Herzminutenvolumens. Z Kardiol 74: 317–321PubMedGoogle Scholar
  46. Schlüter M, Thier W, Hinrichs A, Kremer P, Siglow V, Hanrath P (1984) Klinischer Einsatz der transösophagealen Echokardiographie. Dtsch Med Wochenschr 109: 722–727PubMedCrossRefGoogle Scholar
  47. Schlüter M, Hinrichs A, Schofer J, Bleifeld W (1985) Farbkodierte zweidimensionale Dopplerechokardiographie. Erste klinische Erfahrungen. Z Kardiol (im Druck )Google Scholar
  48. Schofer J, Mathey DG, Montz R, Bleifeld W, Stritzke P (1983) Use of dual intracoronary scintigraphy with Thallium-201 and Technetium-99m Pyrophosphate to predict improvement in left ventricular wall motion immediately after intracoronary thrombolysis in acute myocardial infarction. J Am Coll Cardiol 2: 737–744PubMedCrossRefGoogle Scholar
  49. Schwaiger M, Huang SC, Krivokapich J, Phelps ME, Schlebert HR (1983) Myocardial glucose utilization measured noninvasively in man by positron tomography ( Abstr ). J Am Coll Cardiol 1: 688Google Scholar
  50. Silverman NH, Golbus MS (1985) Echocardiographic techniques for assessing normal and abnormal fetal cardiac anatomy. J Am Coll Cardiol 5: 20CrossRefGoogle Scholar
  51. Sobel BE, Geltman EM, Tiefenbrumm A J et al. (1984) Improvement of regional myocardial metabolism after coronary thrombolysis induced with tissue type plasminogen activator or streptokinase. Circulation 69: 983–990PubMedCrossRefGoogle Scholar
  52. Souquet J, Hanrath P, Zitelli L, Kremer P, Langenstein BA, Schlüter M (1982) Transesophageal phased array for imaging the heart. IEEE Trans Biomed Eng BME 29: 707–712CrossRefGoogle Scholar
  53. Spielmann RP, Nienaber CA, Heinemann H, Montz R (1985) Localization of post-infarction myocardial ischemia by 201-Thallium emission computed tomography. Nucl Med 24: 201–205Google Scholar
  54. Syrota A, Maziere M, Crouzel M, Sastre J, Prenant C (1982) Visualization of muscarinic acetylcholine receptors in the human heart using 11C-methyl-QNB and positron emission tomography. In: Raynaud C (ed) Nuclear medicine and biology. Pergamon, Oxford New York, pp 2503–2505Google Scholar
  55. Thier W, Schlüter M, Kremer P, Hausdorf G, Krebber HJ, Schröder S, Hanrath P (1983) Transösophageale zweidimensionale Echokardiographie: bessere Darstellung intraatrialer Strukturen. Dtsch Med Wochenschr 108: 1903–1907PubMedCrossRefGoogle Scholar
  56. Whitman GJR, Chance B, Bode H et al. (1985) Diagnosis and therapeutic evaluation of a pediatric case of cardiomypathy using phosphorus-31 nuclear magnetic resonance spectroscopy. J Am Coll Cardiol 5: 745–749PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. Bleifeld
  • C. Nienaber
  • M. Schlüter

There are no affiliations available

Personalised recommendations