Skip to main content

The Use of Electrophoresis in Sponge Taxonomy

  • Conference paper

Part of the book series: NATO ASI Series ((ASIG,volume 13))

Synopsis

Enzyme electrophoresis detects products of individual gene loci and allows the calculation of gene frequencies and the estimation of exchange rates between populations. Speciation and subsequent evolution result in genetic divergence between populations and can therefore be studied. Electrophoresis has been used to distinguish sibling species and to establish the taxonomic status of dubious sub-species and colourmorphs of a wide range of organisms. The Porifera are a taxonomically difficult group, offering many possible applications for such methods. Preliminary results of electrophoretic studies on sponges are discussed and used to evaluate the potential for future work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Avise J.C., 1974 The systematic value of electrophoresis data. Syst. Zool., 23: 465–481.

    Article  Google Scholar 

  • Ayala F.J., 1983 Enzymes as taxonomic characters: pp 3–26 in Protein polymorphism: adaptative and taxonomic significance. G.S. Oxford & D. Rollinson (eds), Academic Press, London.

    Google Scholar 

  • Ayala F.J., Hedgecock D., Zumwalt G.S. & Ehrenfeld J.C., 1973 Genetic variation in Tridacna maxima, an ecological analogue of some unsuccessful evolutionary lineages. Evolution, 27: 177–191.

    Article  Google Scholar 

  • Ayala F.J., Valentine J.W., Barr E.G. & Zumwalt G.S., 1974 Genetic variability in a temperate intertidal phoronid Phoronopsis viridis. Biochem. Genet., 11: 413–427.

    Google Scholar 

  • Ayala F.J., Valentine J.W., Hedgecock d. & Barr E.G., 1975 Deep-sea asteroids: high genetic variability in a stable environment. Evolution, 29: 203–212.

    Article  Google Scholar 

  • Baden D.G. & Corbett M.D., 1979 Peroxidases produced by the marine sponge Iotrochota birotulata. Comp. Biochem. Physiol., 64B: 279–283.

    CAS  Google Scholar 

  • Balakirev E.S. & Manchenko G.P., 1983 High level of genetic variability in the sipunculan Phascolosoma japonicum. Genetika, 19: 1638–1643 (in Russian).

    Google Scholar 

  • Balakirev E.S. & Manchenko G.P., 1985 Intraspecific genetic variation in the sponge Suberites domuncula. Biol. Moyra., 5: 36–40.

    Google Scholar 

  • Beaumont A.R., Gosling E.M., Beveridge C.M., Budd M.D. & Burneil G.M., 1985 Studies on heterozygosity and size in the scallop, Pecten maximus: pp 443–454 in Proceedings of the 19th European marine biology symposium. P.E. Gibbs (ed), Cambridge University press, Cambridge.

    Google Scholar 

  • Beckitt R., 1980 Genetic structure of Pileolaria pseudomilitaris. Genetics, 96: 711–721.

    Google Scholar 

  • Bergquist P.R., 1978 Sponges. Hutchinson Press, London.

    Google Scholar 

  • Bergquist P.R., Hofheinz W. & Oesterhelt G., 1980 Sterol composition and the classification of the Demospongiae. Biochem. Syst. Ecol 8: 423–435.

    Article  CAS  Google Scholar 

  • Bergquist P.R. & Wells R.J., 1983 Chemotaxonomy of the Porifera: the developments and current status of the field:in Marine Natural Products vol. 5. P.J. Scheuer (ed), Academic Press, London.

    Google Scholar 

  • Berlocher S.H., 1984 Insect molecular systematics. Ann. Rev. Entomol, 29:

    Google Scholar 

  • Bisol P.M., Costa R. & Sibuet M., 1984 Ecological and genetical survey of two deep-sea holothurians: Benthogone rosea and Benthodytes typica. Mar. Ecol. Prog. Ser, 15: 275–281.

    Article  Google Scholar 

  • Brewer G.C., 1970 An introduction to isozyme techniques. Academic Press, New York.

    Google Scholar 

  • Bucklin A., 1985 Biochemical genetic variation, growth and regeneration of the sea anemone, Metridium, of British shores. J. Mar. Biol. Assoc. U.K, 65: 141–157.

    Article  Google Scholar 

  • Campbell C.A., Valentine J.W. & Ayala F.J., 1975 High genetic variability in a population of Tridacna maxima from the great barrier reef. Mar. Biol, 33: 341–345.

    Article  Google Scholar 

  • Child A.R., 1984 Biochemical polymorphism in charr (Salvinus alpinus) from three Cumbrian lakes. Heredity, 53: 249–257.

    Article  Google Scholar 

  • Connes R., Diaz J.-P., Nègre G. & Paris J., 1974 Etude morphologique, cytologique et sérologique de deux formes de Suberites massa de l’étang de Thau. Vie Milieu, 24: 213–224.

    Google Scholar 

  • Cruz T.A., Thorpe J.P. & Pullin R.S.V., 1982 Enzyme electophoresis in Tilapia zilii: a pattern for determining bichemical genetic markers for use in Tilapia stock identification. Aquaculture, 29: 311–329.

    Article  CAS  Google Scholar 

  • Dobzhansky T., 1970 Genetics of the evolutionary process. Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky T., Ayala F.J., Stebbins G.L. & Valentine J.W., 1977 Evolution. W.H. Freeman, San Francisco.

    Google Scholar 

  • Ferguson A., 1980 Biochemical systematics and evolution. Blackie, Glasgow.

    Google Scholar 

  • Fisher S.E., Shaklee J.B., Ferris S.D. & Whitt G.S., 1980 Evolution of five multilocus enzyme systems in the chordates. Genetica, 52: 73–85.

    Article  Google Scholar 

  • Fitch W.M., 1973 Aspects of molecular evolution. Ann. Rev. Genet, 1: 343–380.

    Article  Google Scholar 

  • Fitch W.M., 1976 Molecular evolutionary clocks: pp 160–178 in Molecular evolution. F.J. Ayala (ed), Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Fry W.G., 1971 The biology of larvae of Ophlitaspongia seriata from two North Wales populations: pp 155–178 in Fourth European Marine Biology Symposium. Ed by D.J. Crisp. Cambridge University Press, London.

    Google Scholar 

  • Gaal D., Medgyesi G.A. & Vereczkei A., 1980 Electrophoresis in the separation of biological macromolecules. John Wiley & Sons, Toronto.

    Google Scholar 

  • Génermont J. & Lamotte M., 1980 Le concept biologique de l’espèce dans la zoologie contemporaine. Mém. Soc. Zool. France, 40: 427–452.

    Google Scholar 

  • Gorman G.C. & Renzi J., 1979 Genetic distance and heterozygosity estimates in electrophoretic studies: effects of sample size. Copeia, 1979: 242–249.

    Article  Google Scholar 

  • Gotlieb L.D., 1977 Gel electrophoresis: a new approach to the study of evolution. Bioscience, 21: 939–944.

    Article  Google Scholar 

  • Gresham M.L. & Tracey M.L., 1975 Genetic variation in an intertidal gastropod, Collisella digitalis. Genetics, 80: 37.

    Google Scholar 

  • Guérin J.-P. & Kerambrun P., 1983 Mise en évidence de différentes formes dans le complexe Malacoceros fuliginosus Claparède (annélide, polychète). Rapp. Froc. Verb. Réun. Comm. Internat. Explorât. Scient, mer Méditerranée, 28: 287–288.

    Google Scholar 

  • Hammond L.S. 6e Poiner I.R., 1984 Genetic structure of three populations of the “living fossil” brachiopod Lingula from Queensland, Australia. Le- thaia 17: 139–143. 8

    Google Scholar 

  • Harris H., 1966 Enzyme polymorphism in man. Proc. R. Soc. London 164B: 298–310.

    Article  CAS  Google Scholar 

  • Harris H. & Hopkinson D.A., 1978 Handbook of enzyme electrophoresis in human genetics. North Holland, Armsterdam.

    Google Scholar 

  • Havenhand J.N., Thorpe J.P. & Todd P.D., 1986 Estimates of biochemical genetic diversity within and between the nudibranch molluscs Adalaria proxima (Alder & Hancock) and Onchidoris muricata (Muller) (Doridacea: Onchidorididae). J. Exp. Mar. Biol. Ecol 95: 105–111.

    Article  Google Scholar 

  • Hubby J.L., 1963 Protein differences in Drosophila. I. Drosophila melanogaster. Genetics, 48: 871–879.

    CAS  Google Scholar 

  • Hubby J.L. & Lewontin R.C., 1966 A molecular approach to the study of genetic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudobscura. Genetics, 54: 577–594.

    CAS  Google Scholar 

  • Hunter R.L. & Markert C.L., 1957 Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science, 125: 1294–1295.

    Article  PubMed  CAS  Google Scholar 

  • Innés D.J., 1984 Genetic differentiation among populations of marine algae. Helgol. Meeresunt, 38: 401–417.

    Article  Google Scholar 

  • Johnson F.M., Kanapi C.G., Richardson R.H., Wheeler M.R. & Stone W.S. 1966 An operational classification of Drosophila esterases for species comparisons. Univ. Texas Publ, 6615: 517–537.

    Google Scholar 

  • Jonhson M.S. & Black R., 1984 Pattern beneath the chaos: the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution, 38: 1371–1383.

    Article  Google Scholar 

  • King P.E. Thorpe J.P. & Wallis G.P., 1986 A biochemical genetic and morphological investigation of the species within the genus Endeis Philippe (Pycnogonida; Endeidae) in Britain. J. Exp. Mar. biol. Ecol, 98: 115–128.

    Article  Google Scholar 

  • Koehn R.K. & Gaffney P.M., 1977 Genetic heterozygosity and growth rate in Mytilus edulis. Mar biol, 82: 1–7.

    Article  Google Scholar 

  • Korotkova A., 1979 Peculiarities of somatic embryogenesis in Porifera: pp 53–58 in Sponge Biology. C. Lévi & N. Boury-Esnault (eds), CNRS, 291, Paris.

    Google Scholar 

  • Lewontin R.C., 1974 The genetic basis of evolutionary change. Columbia University Press, New York.

    Google Scholar 

  • Lewontin R.C. & Hubby J.L., 1966 A molecular approach to the study of genetic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudobscura. Genetics, 54: 595–609.

    CAS  Google Scholar 

  • Mallet A.L., Zouros E., Gartner-Kepay K.R. & Freeman K.R., 1986 Genetics of growth in blue mussels: family and enzyme-heterozygosity effects. Mar. Biol, 92: 475–482.

    Google Scholar 

  • Marcus N.H., 1977 Genetic variation within and between geographically separated populations of the sea urchin, Arbacia punctulata. Biol. Bull, 153: 560–576.

    Google Scholar 

  • Mayr E., 1963 Animal species and evolution. Harvard University Press, New York.

    Google Scholar 

  • McCommas S.A. & Lester L.J., 1980 Electrophoretic evaluation of the taxonomic status of two species of sea anemone. Biochem. Syst. Ecol, 8: 289–292.

    Google Scholar 

  • Moav R., Brody T., Wohlfarth G. & Hulata G., 1976 Applications of electrophoretic genetic markers to fish breeding. I. Advantages and methods. Aquaculture, 9: 217–228.

    Google Scholar 

  • Mork J., Solemdal P. & Sundnes G., 1983 Identification of marine fish eggs : a biochemical genetics approach. Can. J. Fish. Aquat. Sci., 40 : 361–369.

    Article  CAS  Google Scholar 

  • Nei M., 1972 Genetic distance between populations. Amer. Natur, 106: 283–292.

    Google Scholar 

  • Neigel J.E. & Avise J.C., 1983 Histocompatibility bioassays of population structure in marine sponges. J. Heredity, 74: 134–140.

    Google Scholar 

  • Nelson K. & Hedgecock D., 1980 Enzyme polymorphism and adaptative strategy in the decapod crustacea. Amer. Natur, 116: 238–280.

    Article  CAS  Google Scholar 

  • Orr J., Thorpe J.P. & Carter M.A., 1982 Biochemical genetic confirmation of the asexual production of brooded offspring in the sea anemone Actinia equina. Mar. Ecol. Prog. Ser, 7: 227–229.

    Google Scholar 

  • Ottaway J.R. & Kirby G.C., 1975 Genetic relationships between brooding and brooded Actinia tenebrosa. Nature, 225: 221–223.

    Article  Google Scholar 

  • Pakhomov A.N., Sukhodollskaya A.N. & Mukhlenkov A.G., 1974 Electrophoretic investigation of esterase spectrum in sponge tissues. Vestnik Leningr. gos. Univ 1974 : 137–138 (in Russian).

    Google Scholar 

  • Sarà M., in press Divergence between the sympatric species Tethya aurantium and T. citrina an example of speciation in sponges.Proceedings of the third international Conference on the Biology of Sponges K. Rützler & W.D. Hartman (eds), Smithsonian Institution Press, Washington.

    Google Scholar 

  • Schmidtke J., Weiler C., Kunz B. & Engel W., 1977 Isozymes of a tunicate and a cephalochordate as a test of polyploidisation in chordate evolution. Nature, 266: 532–533.

    Article  PubMed  CAS  Google Scholar 

  • Schoots A.F.M., Schrijen J.J. & Denuce J.M., 1977 Some characteristics of esterases in extracts of the freshwater sponge Spongilla sp. Comp. Biochem. Physiol. 56C: 49–51.

    Google Scholar 

  • Scozzani R., Ulizzi L., Ferracini A. & Lunadei M., 1980 An electrophoretic polymorphism that mimics a true genetic polymorphism in Triturus cris- tatus carnifex (Amphibia, Urodela). Experientia, 36: 645–646.

    Article  Google Scholar 

  • Smith P.J. & Fujio Y., 1982 Genetic variation in marine teleosts: high variability in habitat specialists and low variability in habitat genera- lists. Mar. Biol, 69: 7–20.

    Google Scholar 

  • Simonarsen B. & Watts D.C., 1969 Some fish muscle esterases and their variation in stocks of the herring (Clupea harengus L.). The nature of esterase variation. Comp. Biochem. Physiol, 31: 309–318.

    Article  Google Scholar 

  • Snyder J.P. & Gooch J.L., 1973 Genetic differentiation in Littorina saxatilis (Gastropoda). Mar. Biol, 22: 177–182.

    Google Scholar 

  • Solé-Cava A.M., 1986 Studies of biochemical genetics and taxonomy in coelenterates and sponges. PhD Thesis, University of Liverpool.

    Google Scholar 

  • Solé-Cava A.M. & Thorpe J.P., 1986 Genetic differentiation between morpho- types of the marine sponge Suberites ficus (Demospongiae: Hadromerida). Mar. Biol, 93: 247–253.

    Google Scholar 

  • Solé-Cava A.M. & Thorpe J.P., in press High levels of genetic variation in marine sponges. Proceedings of the third international Conference on Biology of Sponges K. Rützler & W.D. Hartman (eds), Smithsonian Institution Press, Washington.

    Google Scholar 

  • Solé-Cava A.M., Thorpe J.P. & Kaye J.G., 1985 Reproductive isolation with little genetic divergence between Urticina (= Tealia) felina and U. eques (Anthozoa: Actiniaria). Mar. Biol, 85: 279–284.

    Article  Google Scholar 

  • Thorpe J.P., 1979 Enzyme variation and taxonomy: the estimation of sampling errors in measurements of interspecific genetic similarity. Biol. J. Linn. Soc, 11: 369–386.

    Google Scholar 

  • Thorpe J.P., 1982 The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematics. Ann. Rev. Ecol. Syst, 13: 139–168.

    Google Scholar 

  • Thorpe J.P., 1983 Enzyme variation, genetic distance and evolutionary divergence in relation to levels of taxonomic separation: pp 131–152 in Protein polymorphism: adaptative and taxonomic significance. G.S. Oxford & D. Rollinson (eds), Academic Press, London.

    Google Scholar 

  • Thorpe J.P., Beardmore A. & Ryland J.S., 1978 Genetic evidence for cryptic speciation in the marine bryozoan Alcyonidium gelatinosum. Mar. Biol, 49: 27–32.

    Article  Google Scholar 

  • Thorpe J.P. 6c Ryland J.S., 1979 Cryptic speciation detected by biochemical genetics in three ecologically important species of intertidal bryozoans. Estuar. Coast. Mar. Sci, 8: 395–398.

    Article  CAS  Google Scholar 

  • Urbaneja M. & Lin A.L., 1981 A preliminary study on the isozyme patterns and taxonomy of tropical sponges. Comp. Biochem. Physiol, 70B: 367–373.

    Google Scholar 

  • Valentine J.W. & Ayala F.J., 1974 Genetic variation in Frieleia halli, a deep-sea brachiopod. Deep-sea Res, 22: 37–44.

    Google Scholar 

  • Van de Vyver G., 1971 Analyse de quelques phénomènes d’histoincompatibi- lité intraspécifique chez l’éponge Ephydatia fluviatilis. Archs Zool. exp. gén, 112: 55–62.

    Google Scholar 

  • Vawter A.T., Rosenblatt R. & Gorman G.C., 1980 Genetic divergence among fishes of eastern Pacific and Caribbean: support for the molecular clock. Evolution, 34: 705–711.

    Article  Google Scholar 

  • Ward R.D., 1978 Subunit size of enzymes and genetic heterozygosity in vertebrates. Bioch. Genet, 16: 779–810.

    Google Scholar 

  • Wilson A.L., Carlson S.S. & White T.J., 1977 Biochemical evolution. Ann. Rev. Biochem, 46: 573–639.

    Article  PubMed  CAS  Google Scholar 

  • Zouros E., Singh S.M. & Miles H.E., 1980 Growth rate in oysters: an overdominant phenotype and its possible explanations. Evolution, 34: 856–867.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sole-Cava, A.M., Thorpe, J.P. (1987). The Use of Electrophoresis in Sponge Taxonomy. In: Vacelet, J., Boury-Esnault, N. (eds) Taxonomy of Porifera. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70892-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70892-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70894-7

  • Online ISBN: 978-3-642-70892-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics