Effects of Heavy Metals and Aluminum on the Root Physiology of Spruce (PiceaAbies Karst.) Seedlings

  • D. L. Godbold
  • R. Tischner
  • A. Hüttermann
Part of the NATO ASI Series book series (volume 16)


The toxicity of the heavy metals Zn, Cd, Hg and Pb and organic complexes of Hg and Pb to four-week old Picea abies seedlings was assessed by estimating the effects of these metals on root elongation. The toxicity of these metals when supplied as inorganic salts was found to differ considerably, the order of toxicity being Hg > Pb > Cd > Zn, with Hg being over a 100 times more toxic than Zn. Methyl-Hg was considerably more toxic than HgCl2. This was shown to be due to its chemical form and not to a greater uptake. Lead supplied as triethyl, diethyl and dimethyl lead complexes was also more toxic than PbCl2. However, there was no significant difference between the toxicity of the organic lead complexes. In short-term uptake experiments (5 h), the uptake of Cd into roots of Picea abies was found to be influenced by the ionic composition and pH of the uptake solution. Cd uptake decreased with decreasing pH, and increased with decreasing Ca supply. Al and Mn inhibited Cd uptake, whereas Hg and Zn produced a slight stimulation in uptake.

With the use of X-ray microprobe techniques, the ion contents of vacuoles in root tissue were found to be influenced by both pH and Al. At 2 mM A1 (Ca/Al ratio 0.75) the vacuolar contents of Mg, K and P declined significantly compared to untreated plants. Toxic levels of Cd were found not to influence the K or Mg contents of the roots of Picea abies. Comparison of the metal concentrations shown to inhibit root elongation in nutrient solu- tionto those found in the soil solution fromthehumus layer taken from under trees showing the symptoms of decline, suggests that the levels of Hg, Pb and Zn are sufficiently high to in- fluence root growth.


Heavy Metal Fine Root Nutrient Solution Soil Solution Fulvic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andren AW, Harriss RC (1973) Methyl mercury in estuarine Sediments. Nature, London 235: 256–257CrossRefGoogle Scholar
  2. Carlson RW, Bazzaz FA (1977) Growth reduction in American Sycamore (Platanus occidentalis L.) caused by Pb-Cd interaction. Environ Pollut 12: 243–253CrossRefGoogle Scholar
  3. Cataldo DA, Garland TR, Wilding RE (1983) Cadmium uptake kinetic in soybean. Plant Physiol 54: 844–848CrossRefGoogle Scholar
  4. Chet I, Merg G, Hüttermann A (1984) The effect of acid rain on microbial population, biomass and activity. In: Ulrich (ed) Berichte des Forschungszentrums Waldökosysteme/Waldsterben, vol 3. Gottingen, p 135Google Scholar
  5. Clarkson DT (1966) Effect of aluminum on the uptake and metabolism of phosphorous by barley seedlings. Plant Physiol 41: 165–172PubMedCrossRefGoogle Scholar
  6. Evers FH (1983) Ein Versuch zur Aluminium-Toxizität bei Fichte, Der Forst-und Holzwirt 12: 305–307Google Scholar
  7. Ferguson IB, Clarkson DT (1975) Ion transport and endodermal suberization in the roots of Zea mays. New Phytol 75: 69–79CrossRefGoogle Scholar
  8. Gehrmann J, Gerriets M, Puhe J, Ulrich B (1984) Untersuchungen an Boden, Wurzeln, Nadeln und erste Ergebnisse von Depositions-messungen im Hils. In: Ulrich B (ed) Berichte des Forschungszentrum Waldökosysteme/Waldsterben, vol 2, p 169Google Scholar
  9. Godbold DL, Hüttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest dieback. Environ Pollut A 38: 375–381CrossRefGoogle Scholar
  10. Hassett JJ, Miller JE, Koeppe DE (1976) Interaction of lead and cadmium by roots. Environ Pollut 11: 297–302CrossRefGoogle Scholar
  11. Hüttermann A (1985) Symptome des Waldsterbens. Allgem Forstz 4: 67–70Google Scholar
  12. Hüttermann A, Ulrich B (1984). Solid-phase- solution- root interaction in soils subject to acid deposition. Phil Trans Roy Soc Lond B305: 353–368Google Scholar
  13. Jastrow JD, Koeppe DE (1980) Uptake and effects of cadmium in higher plants. In: Nriagu JO (ed) Cadmium in the environment, John Wiley and Sons, Toronto, p 607Google Scholar
  14. Kerndorff H (1980) Analytische und experimentelle Untersuchungen zur Bedeutung der Humin- und Fulvosäuren als Reaktionspartner für Schwermetalle in anthropogen belasteten und unbelasteten Regionen. PhD Thesis, Universität Mainz, F.R.G.Google Scholar
  15. Murach D (1984) Die Reaktion der Feinwurzeln von Fichten (Picea abies Karst.) auf zunehmende Bodenversauerung. PhD Thesis, Universität Göttingen, F.R.G.Google Scholar
  16. Nagase H, Ose Y, Sato T, Ishikawa T (1982) Methylation of mercury by humic substances in the aquatic environment. Sei Total Environ 24: 133–142CrossRefGoogle Scholar
  17. Rogers RD (1976) Methylation of mercury in agricultural soils. J Environ Qual 5: 454–458CrossRefGoogle Scholar
  18. Rogers RD (1977) Abiological methylation of mercury in soil. J Environ Qual 6: 463–467CrossRefGoogle Scholar
  19. Rost-Siebert K (1985) Al-Toxizität bei Fichten- und Buchenkeimlingen, PhD Thesis, Universität Göttingen, F.R.G.Google Scholar
  20. Schulte-Bisping H, Murach D (1984) Inventur der Biomass und ausgewählter chemischer Elemente in zwei unterschiedlich stark versauerten Fichtenjungbestanden im Hils. In: Ulrich B (ed) Berichte des Forschungszentrum Waldökosystem/Waldsterben, vol 2, p 207Google Scholar
  21. Tills AR, Alloway BJ (1983a). The use of liquid chromatography in the study of cadmium speciation in soil solution from polluted soils. J Soil Sei 34: 769–781Google Scholar
  22. Tills AR, Alloway BJ (1983b). The speciation of lead in soil solution from very polluted soils. Environ Tech Letts 4: 529–534CrossRefGoogle Scholar
  23. Tischner R, Kaiser U, Hüttermann A (1983) Untersuchungen zum Einfluss von Aluminium-Ionen auf das Wachstum von Fichtenkeimlingen in Abhangigkeit vom pH-Wert. Forstw Cbl 102: 329–336CrossRefGoogle Scholar
  24. Tischner R, Stelzer R, Hüttermann A (in press). Distribution pattern of different elements in root vacuoles of spruce seedlings dependent on combined Al and pH treatments. J Plant PhysiolGoogle Scholar
  25. Ulrich B (1981) Eine ökosystemare Hypothese über die Ursachen des Tannensterbens (Abies alba Mill.). Forstw Cbl 11: 228–236CrossRefGoogle Scholar
  26. Vogt KA, Edmonds RL, Grier CC, Piper SR (1980) Seasonal changes in mycorrhizal and fibrous-textured root biomass in 23 and 180 year old Pacific silver fir stands in western Washington. Can J For Res. 10: 523–529CrossRefGoogle Scholar
  27. Vogt KA, Edmonds RL, Grier CC (1981) Seasonal changes in biomass and vertical distribution of mycorrhizal and fiberous-textured conifer fine roots in 23 and 180 year old subalpine Abies amabilis stands. Can J For Res 11: 223–229CrossRefGoogle Scholar
  28. Woolhouse HW (1969) Differences in the properties of the acid phosphatases of plant roots and their significance in the evolution of edaphic ecotypes. In Rorison IH (ed) Ecological aspects of the mineral nutrition of plants, Blackwell, Oxford p 357Google Scholar
  29. Zöttl HW, Mies E (1983) Die Fichtenerkrankungen in Lagen des Südschwarzwaldes. Allgem Forst- und Jagdzeitg 154: 6–7Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • D. L. Godbold
    • 1
  • R. Tischner
    • 2
  • A. Hüttermann
    • 1
  1. 1.Forstbotanisches InstitutUniversität GöttingenGöttingenGermany
  2. 2.Botanishes InstitutUniversität GöttingenGöttingenGermany

Personalised recommendations