Skip to main content
Book cover

Insect Aging pp 117–129Cite as

Structural Correlates of Aging in Drosophila: Relevance to the Cell Differentiation, Rate-of-Living and Free Radical Theories of Aging

  • Chapter

Abstract

Because of the technical advantages associated with its small size and well known genetics, Drosophila is an excellent model for gerontological research. Further, since the Drosophila imago only contains fixed postmitotic cells, it is very suitable for study of the intricate relationships between cell differentiation and aging. Indeed, as noted elsewhere (Miquel and Fleming 1984), the cyto-logical homogeneity of the fruit fly is a great advantage for the elucidation of the fundamental mechanisms of aging, which are very hard to pinpoint in the complex mammalian tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew W (1964) Changes in the nucleus with advancing age of the organism. Adv Gerontol Res 1:87–107

    Google Scholar 

  • Anton-Erxleben F, Miquel J, Philpott DE (1983) Fine structural changes in the midgut of old Drosophila melanogaster. Mech Ageing Dev 23:265–276

    Article  PubMed  CAS  Google Scholar 

  • Atlan H, Miquel J, Heimle LC, Dolkas CB (1976) Thermodynamics of aging in Drosophila melanogaster. Mech Ageing Dev 3:371–387

    Article  Google Scholar 

  • Donato H, Sohal RS (1978) Age-related changes in lipofuscin associated fluorescent substances in the adult male housefly Musca domestica. Exp Gerontol 12:171–179

    Article  Google Scholar 

  • Fleming JE, Miquel J (1983) Effects of temperature on the metabolic rate of young and old Drosophila. Experientia 39:267–268

    Article  Google Scholar 

  • Fleming JE, Leon HA, Miquel J (1981) Effects of ethidium bromide on development and aging of Drosophila: implications for the free radical theory of aging. Exp Gerontol 16:287–293

    Article  PubMed  CAS  Google Scholar 

  • Fleming JE, Miquel J, Cottrell SF, Yengoyan LS, Economos AC (1982) Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 28:44–53

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Herman MM, Miquel J, Johnson M (1971) Insect brain as a model for the study of aging. Age related changes in Drosophila melanogaster. Acta Neuropathol (Berlin) 19:167–183

    Article  CAS  Google Scholar 

  • Johnson J, Miquel J (1979) Senescent changes in the ribosomes of animal cells in vivo and in vitro. Mech Ageing Dev 8:1–20

    CAS  Google Scholar 

  • Lansing AI (1964) Age variations in cortical membranes of rotifers. J Cell Biol 23:403–424

    Article  PubMed  CAS  Google Scholar 

  • McArthur MC, Sohal RS (1981) Relationship between metabolic rate, aging, lipid peroxidation and fluorescent age pigment in milkweed bug, Oncopeltus fasciatus (Hemiptera). J Gerontol 37:268–274

    Google Scholar 

  • Minot CS (1907) The problem of age, growth and death. Pop Sci Mon 71:496

    Google Scholar 

  • Miquel J (1971) Aging of male Drosophila melanogaster. histological, histochemical and ultra-structural observations. In: Strehler BL (ed) Advances in gerontological research, vol. 3. Academic Press, London New York, pp 39–71

    Google Scholar 

  • Miquel J, Fleming JE (1984) A two-step hypothesis on the mechanisms of in vitro cell aging: cell differentiation followed by intrinsic mitochondrial mutagenesis. Exp Gerontol 19:31–36

    Article  PubMed  CAS  Google Scholar 

  • Miquel J, Calvo W, Rubinstein LJ (1968) A simple and rapid stain for the biopsy diagnosis of brain tumors. J Neuropathol Exp Neurol 27:517–523

    Article  Google Scholar 

  • Miquel J, Bensch KG, Philpott DE (1972) Virus-like particles in the tissues of normal and γ-irradiated Drosophila melanogaster. J Invertebr Pathol 19:156–159

    Article  PubMed  CAS  Google Scholar 

  • Miquel J, Tappel A, Dillard CJ, Herman MM, Bensch KG (1974) Fluorescent products and lysosomal components in aging Drosophila melanogaster. J Gerontol 29:622–637

    PubMed  CAS  Google Scholar 

  • Miquel J, Lundgren PR, Bensch KG (1975) Effects of oxygen-nitrogen (1:1) at 760 Torr on the life span and fine structure of Drosophila melanogaster. Mech Ageing Dev 4:41–57

    Article  PubMed  CAS  Google Scholar 

  • Miquel J, Lundgren PR, Bensch KG, Atlan H (1978) Effects of temperature on the life span and fine structure of Drosophila melanogaster. Mech Ageing Dev 5:347–370

    Article  Google Scholar 

  • Miquel J, Economos AC, Bensch KG, Atlan H, Johnson JE Jr (1979) Review of cell aging in Drosophila and mouse. Age 2:78–88

    Article  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    Article  PubMed  CAS  Google Scholar 

  • Miquel J, Economos AC, Bensch KG (1981) Insect vs. mammalian aging. In: JE Johnson Jr (ed) Aging and cell structure, vol. 1. Plenum Publ, New York, pp 347–379

    Google Scholar 

  • Miquel J, Fleming JE, Economos AC (1982) Antioxidants, mitochondrial respiration and aging in Drosophila. Arch Gerontol Geriatr 1:349–363

    Article  PubMed  Google Scholar 

  • Miquel J, Binnard R, Fleming JE (1983) Role of metabolic rate and DNA repair in Drosophila aging: implications for the mitochondrial mutation theory of cell aging. Exp Gerontol 18:161–171

    Article  Google Scholar 

  • Miquel J, Economos AC, Johnson JE Jr (1984) A systems-thermodynamic view on cell and organismic aging. In: Johnson JE (ed) Aging and cell function. Plenum Press, New York London, pp 247–280

    Google Scholar 

  • Pearl R (1928) The rate of living. Univ London Press, London

    Google Scholar 

  • Sohal RS (1981a) Relationship between metabolic rate, lipofuscin accumulation and lysosomal enzyme activity during aging in the adult house fly, Musca domestica. Exp Gerontol 16:347–355

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS (1981b) Metabolic rate, aging and lipofuscin accumulation. In: Sohal RS (ed) Age pigments. Elsevier/North Holland, Amsterdam, pp 303–316

    Google Scholar 

  • Sohal RS, Allison VF (1971) Age related changes in the fine structure of the flight muscle in the house fly. Exp Gerontol 6:167–172

    Article  PubMed  CAS  Google Scholar 

  • Spoerri PE, Glees P (1973) Neuronal aging in cultures: an electron microscope study. Exp Gerontol 8:259–263

    Article  PubMed  CAS  Google Scholar 

  • Strehler BL (1977) Time, cells and aging. Academic Press, London New York, pp 307–324

    Google Scholar 

  • Takahashi A, Philpott DE, Miquel J (1970) Electron microscope studies on aging Drosophila melanogaster. III. Flight muscle. J Gerontol 25:222–228

    PubMed  CAS  Google Scholar 

  • Wallach Z, Gershon D (1974) Altered ribosomal particles in senescent nematodes. Mech Ageing Dev 3:225–234

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miquel, J., Philpott, D.E. (1986). Structural Correlates of Aging in Drosophila: Relevance to the Cell Differentiation, Rate-of-Living and Free Radical Theories of Aging. In: Collatz, KG., Sohal, R.S. (eds) Insect Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70853-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70853-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70855-8

  • Online ISBN: 978-3-642-70853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics