Skip to main content

The Rate of Living Theory: A Contemporary Interpretation

  • Chapter
Insect Aging

Abstract

Although the expression “rate of living” and the theory named after it are rightly ascribed to Raymond Pearl (1928), the underlying idea and its mechanistic basis have a long, ongoing evolutionary history. As originally proposed, this theory stated that the duration of life of an organism is dependent upon the exhaustion of a fixed quantity of a vital substance at a rate proportional to the metabolic rate. Two distinct factors were believed to govern length of life: (a) a genetically determined metabolic potential, and (b) rate of metabolism. The first component of this theory owes its origin to the earlier reports by Rubner (1908), who noted that the metabolic energy expended per gram body weight during lifetime in five mammalian species, which differed six fold in longevity, was similar, around 200kcal. He proposed that duration of life depended on the rate of expenditure of this limited amount of biological energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aigaki T, Ohba S (1984) Effect of mating status on Drosophilavirilis. Exp Gerontol 19:267–268

    Article  PubMed  CAS  Google Scholar 

  • Alpatov WW, Pearl R (1929) Experimental studies on the duration of life. XII. Influence of temperature during the larval period and adult life of Drosophila melanogaster. Am Nat 63:37–67

    Article  Google Scholar 

  • Barber AA, Bernheim T (1967) Lipid peroxidation: its measurement, occurrence and significance in animal tissues. Adv Gerontol Res 2:355–403

    PubMed  CAS  Google Scholar 

  • Basson ABK, Terblanche SE, Oelofsen W (1982) A comparative study on the effects of aging and training on the levels of lipofuscin in various tissues of the rat. Comp Biochem Physiol 71A:369–374

    Article  CAS  Google Scholar 

  • Brawn K, Fridovich I (1980) Superoxide radical and superoxide dismutases: threat and defense. Acta Physiol Scand Suppl 492:9–18

    PubMed  CAS  Google Scholar 

  • Buchan PB, Sohal RS (1981) Effect of temperature and different sex ratios on physical activity. Exp Gerontol 16:223–228

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Clarke JM, Maynard Smith J (1961) Two phases of ageing in Drosophila subobscura. J Exp Biol 38:679–684

    Google Scholar 

  • Cutler RG (1984a) Antioxidants, aging and longevity. In: Pryor WA (ed) Free radicals in biology, vol VII. Academic Press, London New York, p371

    Google Scholar 

  • Cutler RG (1984b) Evolutionary biology of aging and longevity in mammalian species. In: Johnson JE (ed) Aging and cell function. Plenum Press, New York, p 1

    Google Scholar 

  • Davies KJA, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Davis RA, Fraenkel GF (1940) The oxygen consumption of flies during flight. J Exp Biol 17:402–407

    CAS  Google Scholar 

  • Denhal PA, Segal E (1956) Acclimation of oxygen consumption to temperature in the American cockroach (Periplenata americana). Biol Bull 111:53–61

    Article  Google Scholar 

  • Donato H, Sohal RS (1978) Age-related changes in lipofuscin-associated fluorescent substances in the adult male housefly Musca domestica. Exp Gerontol 13:171 – 179

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    Article  PubMed  CAS  Google Scholar 

  • Gowen JW (1931) Metabolism as related to chromosome structure and the duration of life. J Gen Physiol 14:463–472

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JMC (1982) Free radical damage to lipids, amino acids carbohydrates and amino acids determined by thiobarbituric acid reactivity. Int J Biochem 14:463–472

    Google Scholar 

  • Halliwell B (1981) Oxygen toxicity, free radicals and aging. In: Sohal RS (ed) Age Pigments. Elsevier/North-Holland, Amsterdam, p 1

    Google Scholar 

  • Hollingsworth MJ (1968) Environmental temperature and life span in poikilotherms. Nature (London) 218:869–870

    Article  Google Scholar 

  • Lamb MJ (1968) Temperature and life span in Drosophila. Nature (London) 220:808–809

    Article  CAS  Google Scholar 

  • Lints FA, Lints CV (1968) Respiration in Drosophila. II. Respiration in relation to age by wild, inbred and hybrid Drosophila melanogaster imagos. Exp Gerontol 3:341–349

    Article  PubMed  CAS  Google Scholar 

  • Lints FA, Le Bourg E, Lints CV (1984) Spontaneous locomotor activity and life span. A test for the rate of living theory in Drosophila melanogaster. Gerontology 30:376–387

    Article  PubMed  CAS  Google Scholar 

  • Loeb J, Northrop JH (1971) On the influence of food and temperature on the duration of life. J Biol Chem 32:103–121

    Google Scholar 

  • McArthur JW, Baillie WHT (1929) Metabolic activity and duration of life. II. Metabolic rates and their relation to longevity in Daphnia magna. J Exp Zool 53:243–286

    Article  CAS  Google Scholar 

  • Marzusch K (1952) Untersuchungenüber die Temperaturabhängigkeit von Lebensprozessen bei Insekten unter besonderer Berücksichtigung winterschlafender Kartoffelkäfer. Z Vergl Physiol 34:75–79

    Article  Google Scholar 

  • Maynard Smith, J (1963) Temperature and the rate of ageing in poikilotherms. Nature (London) 199:400–401

    Article  Google Scholar 

  • McArthur M, Sohal RS (1982) Relationship between metabolic rate, aging, lipid peroxidation and age pigment in milkweed bug, Oncopeltus fasciatus (Hemiptera). J Gerontol 37:268–274

    PubMed  CAS  Google Scholar 

  • Mellanby K (1939) Low temperature and insect activity. Proc R Soc London B Ser 127:473–487

    Article  Google Scholar 

  • Miquel J, Lundgren PR, Bensch KG, Atlan H (1976) Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech Ageing Dev 5:347–370

    Article  PubMed  CAS  Google Scholar 

  • Newell RC (1969) The effect of temperature fluctuations on the metabolism of intertidal invertebrates. Am Zool 9:293–307

    Google Scholar 

  • Northrop JH (1926) Carbon dioxide production and duration of life of Drosophila cultures. J Gen Physiol 9:319–324

    Article  PubMed  CAS  Google Scholar 

  • Partridge L, Farquhar M (1981) Sexual activity reduces lifespan of male fruitflies. Nature (London) 294:580–582

    Article  Google Scholar 

  • Pearl R (1928) The rate of living. Knopf, New York

    Google Scholar 

  • Platzer I (1967) Temperature adaptations in tropical chironomids. Z Vergl Physiol 54:58–74

    Article  Google Scholar 

  • Prosser CL (1973) Comparative animal physiology, chap 9. Saunders, Philadelphia

    Google Scholar 

  • Quintanilha AT, Packer L, Davies JMS, Racangle TL, Davies KJA (1982) Membrane effects of vitamin E deficiency: bioenergetic and surface charge density studies on skeletal muscle and liver mitochondria. Ann NY Acad Sci 393:32–37

    Article  PubMed  CAS  Google Scholar 

  • Ragland SS, Sohal RS (1973) Mating behavior, physical activity and aging in the housefly, Musca domestica. Exp Gerontol 8:135–145

    Article  PubMed  CAS  Google Scholar 

  • Ragland SS, Sohal RS (1975) Ambient temperature, physical activity and aging in the housefly, Musca domestica. Exp Gerontol 10:279–289

    Article  PubMed  CAS  Google Scholar 

  • Rockstein M (1966) Biology of aging in insects. In: Krohn PL (ed) Topics in the biology of aging. Wiley, New York, p43

    Google Scholar 

  • Rubner M (1908) Das Problem der Lebensdauer. Berlin

    Google Scholar 

  • Shaw RF, Bercaw BL (1962) Temperature and lifespan in poikilothermous animals. Nature (London) 196:454–457

    Article  CAS  Google Scholar 

  • Sheldahl JA, Tappel AL (1974) Fluorescent products from aging Drosophila melanogaster: an indicator of free radical lipid peroxidation damage. Exp Gerontol 9:33–41

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Shrift A (1979) Phylogenetic distribution of glutathione peroxidase. Comp Biochem Physiol 63B:39–44

    CAS  Google Scholar 

  • Sohal RS (1976) Metabolic rate an life span. Interdiscip Top Gerontol 9:25 – 40

    Google Scholar 

  • Sohal RS (1981a) Metabolic rate, aging and lipofuscin accumulation. In: Sohal RS (ed) Age pigments. Elsevier/North-Holland, Amsterdam, p303

    Google Scholar 

  • Sohal RS (1981b) Relationship between metabolic rate, lipofuscin accumulation and lysosomal enzyme activity during aging in the adult housefly, Musca domestica. Exp Gerontol 16:347–355

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS (1982) Oxygen consumption and life span in the adult housefly, Musca domestica. Age 5:21–24

    Article  Google Scholar 

  • Sohal RS, Allen RG (1985) Relationship between metabolic rate, free radicals, differentiation and aging: A united theory. In: Woodhead AD, Blackett AD, Hollaender A (eds) The molecular biology of aging. Plenum Press, New York, p 75

    Google Scholar 

  • Sohal RS, Buchan PB (1981a) Relationship between physical activity and life span in the adult housefly, Musca domestica. Exp Gerontol 16:157–162

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Buchan PB (1981b) Relationship between fluorescent age pigment, physiological age and physical activity in the housefly, Musca domestica. Mech Ageing Dev 15:243–249

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Donato H (1978) Effects of experimentally altered life spans on the accumulation of fluorescent age pigment in the housefly, Musca domestica. Exp Gerontol 13:335 – 341

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Donato H (1979) Effect of experimental prolongation of life span on lipofuscin content and lysosomal enzyme activity in the brain of the housefly, Musca domestica. J Gerontol 34:489–496

    PubMed  CAS  Google Scholar 

  • Sohal RS, Donato H, Biehl ER (1981) Effect of age and metabolic rate on lipid peroxidation in the housefly Musca domestica. Mech Ageing Dev 16:159–167

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Farmer KJ, Allen RG, Cohen NR (1984a) Effect of age on oxygen consumption superoxide dismutase, catalase, glutathione, inorganic peroxides and chloroform-soluble antioxidants in the adult male housefly, Musca domestica. Mech Ageing Dev 24:185 – 195

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Allen RG, Farmer KJ, Procter J (1984b) Effect of physical activity on superoxide dismutase, catalase, inorganic peroxides and glutathione in the adult male housefly, Musca domestica. Mech Ageing Dev 26:75–81

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Muller A, Koletzko B, Sies H (1985a) Effect of age and ambient temperature on rirpentane production in the adult housefly, Musca domestica. Mech Ageing Dev 29:317–326

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Allen RG, Farmer KJ, Newton RK, Toy PL (1985b) Effects of exogenous antioxidants on the levels of endogenous antioxidants, lipid-soluble fluorescent material and life span in the housefly, Musca domestica. Mech Ageing Dev (in press)

    Google Scholar 

  • Tappel AL (1975) Lipid peroxidation and fluorescent molecular damage to membranes. In: Trump BF, Arstila AV (eds) Pathobiology of cell membranes, volI. Academic Press, London New York, p 145

    Google Scholar 

  • Tappel AL (1980) Measurement and protection from in vivo lipid peroxidation. In: Pryor WA (ed) Free radicals in biology, volIV. Academic Press, London New York, p1

    Google Scholar 

  • Tolmasoff JM, Ono T, Cutler RG (1980) Superoxide dismutase: Correlation with life span and specific metabolic rate in primate species. Proc Natl Acad Sei USA 77:2777–2781

    Article  CAS  Google Scholar 

  • Tribe MA (1966) Some physiological studies in relation to age in the blowfly, Calliphora erythrocephala Meig. J Insect Physiol 12:1557–1593

    Article  Google Scholar 

  • Trout WE, Kaplan WD (1970) A relationship between longevity, metabolic rate and activity in shaker mutants of Drosophila melanogaster. Exp Gerontol 5:89–92

    Article  Google Scholar 

  • Williams CM, Chadwick LE (1943) Stroboscopic studies on insect flight. Science 98:522–524

    Article  Google Scholar 

  • Wolman M (1981) Factors affecting lipid pigment formation. In: Sohal RS (ed) Age pigments. Elsevier/North-Holland, Amsterdam, p265

    Google Scholar 

  • Zuckerman BM, Geist M (1981) Effect of nutrition and chemical agents on lipofuscin formation. In: Sohal RS (ed) Age pigments. Elsevier/North-Holland, Amsterdam, p283

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sohal, R.S. (1986). The Rate of Living Theory: A Contemporary Interpretation. In: Collatz, KG., Sohal, R.S. (eds) Insect Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70853-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70853-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70855-8

  • Online ISBN: 978-3-642-70853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics