Skip to main content

The Action of Spider Toxins on the Insect Nerve-Muscle System

  • Chapter
  • 85 Accesses

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

In the search for new classes of pesticides it is perhaps surprising that only relatively scant attention has been given to the natural products found in the venoms of a variety of insect predators. Extensive use has been made of vertebrate and invertebrate toxins to gain information on the structure and function of central and peripheral nervous systems across the animal kingdom but for a variety of reasons these are of little interest to the chemical industry. However, many insect predators produce venoms, most of which remain largely uncharacterized, which may well contain active principles of commercial interest. Insect neurobiologists have compelling reasons to ponder over the possible potential of these compounds as research tools since many of the developments which recently have taken place in neuroscience have depended upon the use of venoms and toxins. For example, toxins from snake and spider venoms have been used to study transmitter storage, release and turnover at peripheral and central synapses and the snake toxin, α-bungarotoxin has been particularly instrumental in providing an understanding of the molecular properties of the nicotinic acetylcholine receptor protein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnard EA (1982) Isolation of receptors from the central nervous system. In: Neuropharmacology of insects. Ciba Found Symp 88. Pitman, London

    Google Scholar 

  • Bateman A, Boden P, Dell A, Duce IR, Quicke DLJ, Usherwood PNR (1985) Postsynaptic block of a glutamatergic synapse by low molecular weight fractions of spider venom. Brain Res 339, 237–244

    Article  PubMed  CAS  Google Scholar 

  • Boden P, Duce IR, Usherwood PNR (1984) Activation-induced postsynaptic block of insect nerve- muscle transmission by the low molecular weight fraction of spider venom. Br J Pharmacol, 82, 221 p

    Google Scholar 

  • Clark RB, Gration KAF, Usherwood PNR (1979) Desensitization of glutamate receptors on innervated and denervated muscle fibres. J Physiol (London) 290: 551–568

    CAS  Google Scholar 

  • Clark RB, Donaldson PL, Gration KAF, Lambert JJ, Piek T, Ramsey RL, Spanjer W, Usherwood PNR (1982) Block of locust muscle glutamate receptors by δ-philanthotoxin occurs after receptor activation. Brain Res 241: 105–114

    Article  PubMed  CAS  Google Scholar 

  • Clements AN, May TE (1974) Studies on locust neuromuscular physiology in relation to glutamic acid. J Exp Biol 60: 673–705

    PubMed  CAS  Google Scholar 

  • Cull-Candy SG, Neal H, Usherwood PNR (1973) Action of black widow spider venom on an aminergic synapse. Nature (London) 241: 353–354

    Article  CAS  Google Scholar 

  • Hoyle G (1955) Neuromuscular mechanisms of a locust skeletal muscle. Proc R Soc London Ser B 143: 346 - 367

    Google Scholar 

  • Kawai N, Niwa A, Abe T (1982a) Spider venom contains specific receptor blocker of glutaminergic synapses. Brain Res 247:169–171

    Google Scholar 

  • Kawai N, Niwa A, Abe T (1982b) Effects of spider toxin on glutaminergic synapses in the mammalian brain. Biomed Res 3:353–355

    Google Scholar 

  • Kawai N, Niwa A, Abe T (1983) Specific antagonism of the glutamate receptor by an extract from the spider Araneus ventricosus. Toxicon 21: 438–440

    Article  PubMed  CAS  Google Scholar 

  • Lee CY (1970) Elapid neurotoxins and their mode of action. Clin Toxicol 3: 457–472

    Article  PubMed  CAS  Google Scholar 

  • Mathers DA, Usherwood PNR (1976) Concanavalin A blocks desensitization of glutamate receptors on insect muscle fibres. Nature (London) 259: 409–411

    Article  CAS  Google Scholar 

  • Mathers DA, Usherwood PNR (1978) Effects of concanavalin A on junctional and extrajunctional L-glutamate receptors on locust skeletal muscle fibres. Comp Biochem Physiol 59 C:151–155

    Google Scholar 

  • Piek T (1966a) Site of action of venom of Microbracon hebetor Say (Braconidae, Hymenoptera). J Insect Physiol 12:561–568

    Google Scholar 

  • Piek T (1966b) Site of action of the venom of the digger wasp Philanthus triangulum F on the fast neuromuscular system of the locust. Toxicon 3:191–198

    Google Scholar 

  • Piek T (1969) Action of the venom of Microbracon hebetor Say on the hyperpolarizing potentials in a skeletal muscle of Philosamia cynthia Hubn. Comp Gen Pharmac 1: 117–120

    Google Scholar 

  • Piek T (1984) Insect venoms and toxins. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol XI. Pharmacology. Pergamon Press, Oxford New York

    Google Scholar 

  • Piek T, Spanjer W (1978) Effects and chemical characterization of some paralyzing venoms of solitary wasps. In: Shankland DL, Hollingworth RM, Smyth T (eds) Pesticide and venom neurotoxicity. Plenum Press, New York London

    Google Scholar 

  • Piek T, Mantel P, Engels E (1971) Neuromuscular block in insects caused by the venom of the digger wasp Philanthus triangulum F. Comp Gen Pharmacol 2: 317–331

    Article  PubMed  CAS  Google Scholar 

  • Tashmukhamedov BA, Usmanov PB, Kazakov I, Kalikulov D, Yukelson LY, Atakuziev BU (1983) Effects of different spider venoms on artificial and biological membranes. In: Toxins as tools in neurochemistry. de Gruyther, Berlin New York, pp. 312–323

    Google Scholar 

  • Usherwood PNR, Machili P (1966) Chemical transmission at the insect excitatory neuromuscular synapse. Nature (London) 210: 634–636

    Article  CAS  Google Scholar 

  • Usherwood PNR, Machiii P (1968) Pharmacological properties of excitatory neuromuscular synapses in the locust. J Exp Biol 49: 341–361

    CAS  Google Scholar 

  • Usherwood PNR, Duce IR, Boden P (1984) Slowly-reversible block of glutamate receptor-channels by venoms of the spiders, Argiope trifasciata and Araneus gemma. J Physiol (Paris) 79: 241–245

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg 1985

About this chapter

Cite this chapter

Usherwood, P.N.R. (1985). The Action of Spider Toxins on the Insect Nerve-Muscle System. In: von Keyserlingk, H.C., Jäger, A., von Szczepanski, C. (eds) Approaches to New Leads for Insecticides. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70821-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70821-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70823-7

  • Online ISBN: 978-3-642-70821-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics