Skip to main content

Bifurcations in Particle Physics and in Crystal Growth

  • Conference paper

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 31))

Abstract

In the course of structure formation, periods of slow and steady development are invariably separated by sudden and discontinuous changes in which new spatio-temporal patterns are created. The latter are triggered when, in the nonlinear domain, competing but continuously driving forces enter conflicting regimes. Such spontaneous changes can be described geometrically in terms of bifurcations. In the vicinity of a bifurcation point a system becomes extremely sensitive to small ambient factors like imperfections, external fields or fluctuations. This enhances the system’s ability to perceive its environment and to adapt to it by forming preferred patterns or modes of behavior. Many of the bifurcation processes observed in different systems are qualitatively similar and universal in the sense of being largely independent of system details. This calls for a topological description of the phenomena under consideration which defines, by the notion of equivalence, what it means for two bifurcation processes to be qualitatively similar. The same notion also allows us to account for the basic, though often forgotten fact that physical systems are structurally stable, i.e., that they preserve their quality under small perturbations. This persistence property guarantees that today’s experiment reproduces yesterday’s result. We do not know how it got that way. But, surprisingly enough, the fundamental topological invariance principle provided by this requirement of structural stability enables us to describe and to classify the bifurcation processes that underly the spontaneous formation of structure on geometrical grounds alone, irrespective of their particular physical origin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Nicolis and I. Prigogine, “Selforganization in nonequilibrium systems”, Wiley (1977).

    Google Scholar 

  2. H. Haken, “Synergetics”, Springer (1982);

    MATH  Google Scholar 

  3. H. Haken “Advanced Synergetics”, Springer (1983).

    MATH  Google Scholar 

  4. R. Thorn, “Structural Stability and Morphogenesis”, Benjamin (1975).

    Google Scholar 

  5. M. Golubitsky and D. Schaeffer, Commun. Pure Appl. Math. 32, 21 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Golubitsky and D. Schaeffer, Commun. Math. Phys. 67, 205 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. D.H. Sattinger, Bull. Am. Math. Soc. 3 (2), 779 (1980) and

    Article  MathSciNet  MATH  Google Scholar 

  8. D.H. Sattinger, “Branching in the Presence of Symmetry”, CBMS-NSF Conference Notes 40, SIAM, Philadelphia 1983.

    Book  Google Scholar 

  9. M. Golubitsky and W.F. Langford, J. Diff. Eqns. 41, 375 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Armbruster, G. Dangelmayr and W. Güttinger, Physica 16 D, 99 (1985)

    Google Scholar 

  11. D. Armbruster, Z. Phys. B 53, 157 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Golubitsky and B.L. Keyfitz, SIAM J. Math. Anal. 11, 316 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Labouriau, “Applications of singularity theory to Neurobiology”, Thesis, University of Warwick (1983).

    Google Scholar 

  14. M. Golubitsky and I. Stewart, “Symmetry and Stability in Taylor-Couette Flow” preprint, University of Warwick (1984)

    Google Scholar 

  15. J. Guckenheimer, SIAM J. Math. Anal. 15, 1 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. J.S. Langer, Rev. Mod. Phys. 52, 1 (1980).

    Article  ADS  Google Scholar 

  17. W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 34, 323 (1963);

    Article  ADS  Google Scholar 

  18. W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35, 444 (1964).

    Article  ADS  Google Scholar 

  19. D.J. Wollkind and L.A. Segel, Phil. Trans. R. Soc. (Lond.) 268, 351 (1970).

    Article  ADS  Google Scholar 

  20. J.S. Langer and L.A. Turski, Acta Metall. 25, 1113 (1977).

    Article  Google Scholar 

  21. M. Kerszberg, Phys. Rev. B 27, 6796 (1983).

    Article  ADS  Google Scholar 

  22. L.H. Ungar and R.A. Brown, Phys. Rev. B 29, 1367 (1984).

    Article  ADS  Google Scholar 

  23. P. Haug, Thesis (1985).

    Google Scholar 

  24. G. Dangelmayr and P. Haug, in preparation (1985).

    Google Scholar 

  25. J. Bernstein, Rev. Mod. Phys. 46, No. 1, (1974).

    Google Scholar 

  26. P. Becher, M. Böhm, H. Joos, “Eichtheorien der starken und elektro-schwachen Wechselwirkung”, Teubner (1981).

    Google Scholar 

  27. H. Georgi, S.L. Glashow, Phys. Rev. Letters 32, 438 (1974).

    Article  ADS  Google Scholar 

  28. L. Michel and L.A. Radicati, Ann. Inst. Henr Poincaré, Vol. XVIII, No. 3, 185 (1973).

    MathSciNet  Google Scholar 

  29. M. Golubitsky and D. Schaeffer, “The Benard problem, symmetry, and the lattice of isotropy subgroups”, in C.P. Borter et al. (eds.), Bifurcation Theory, Mechanics and Physics, Reidel (1983)

    Google Scholar 

  30. C. Geiger, Thesis (1985)

    Google Scholar 

  31. M. Abud and G. Sartori, Phys. Lett. B 104, 447 (1981); see also [25]

    MathSciNet  Google Scholar 

  32. L. Michel, CERN-preprint TH 2716 (1979)

    Google Scholar 

  33. S. Ferrara, J. Iliopoulos and B. Zumino, Nucl. Phys. B 158, 420 (1979).

    Google Scholar 

  34. J. Ellis, D.V. Nanopoulos and K.A. Tamvakis, Phys. Lett. 121 B, 123 (1983).

    Google Scholar 

  35. D.V. Nanopoulos, “The Physics of Supersymmetry and Supergravity”, in C. Kounnas et al. (eds.), Grand Unification with and without Supersymmetry and Cosmolo-gical Implications, World Scientific (1984).

    Google Scholar 

  36. E. Cremmer, B. Julia, J. Scherk, P. Van Nieuwenhuizen, S. Ferrara and L. Girar-dello, Phys. Lett. 79 B, 23 (1978) and

    Google Scholar 

  37. E. Cremmer, B. Julia, J. Scherk, P. Van Nieuwenhuizen, S. Ferrara and L. Girar-dello,Nucl. Phys. B 147, 105 (1979).

    Article  ADS  Google Scholar 

  38. A. Guth and F.J. Weinberg, Phys. Rev. D 23, No. 4, 876 (1981);

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Guth and F.J. Weinberg A.D. Linde, Phys. Lett. 108 B, 389 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geiger, C., Güttinger, W., Haug, P. (1985). Bifurcations in Particle Physics and in Crystal Growth. In: Haken, H. (eds) Complex Systems — Operational Approaches in Neurobiology, Physics, and Computers. Springer Series in Synergetics, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70795-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70795-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70797-1

  • Online ISBN: 978-3-642-70795-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics