Parallel Processes and Parallel Algorithms

  • F. Hossfeld
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 31)

Abstract

Whereas many processes are naturally parallel, our perception of processes involved in the dynamics of physical systems, and the design of algorithms in order to model and compute the behaviour of such systems, has been dominated by the paradigm of the sequential flow of operations and data on which the breakthrough of computational science has fundamentally been built, thus enforcing the appearance — and the tremendous success — of the serial von Neumann type computer architecture.

Keywords

Cellular Automaton Discrete Fourier Transform Parallel Algorithm Systolic Array Sequential Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Hossfeld, F.; Weidner, P.: Parallele Algorithmen, Informatik-Spektrum 6 (1983), 142.Google Scholar
  2. 2.
    Hossfeld, F.: Nonlinear Dynamics: A Challenge on High-Speed Computation, Proc. Int. Conf. Parallel Computing 83 (M. Feilmeier et al., eds.), North-Holland 1984, pp. 67.Google Scholar
  3. 3.
    Uhr, L.: Algorithm-Structured Computer Arrays and Networks, Academic Press, 1984.MATHGoogle Scholar
  4. 4.
    Borodin, A.; Munro. I.: The Computational Complexity of Algebraic and Numeric Problems, Elsevier, 1975.MATHGoogle Scholar
  5. 5.
    Munro, I.; Paterson, M.: Optimal Algorithms for Parallel Polynomial Evaluation, J. Computer and Syst. Sci. 7 (1973), 189.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dekel, E.; Sahni, S.: Binary Trees and Parallel Scheduling Algorithms, IEEE Trans. Computers C-32 (1983), 307.MATHCrossRefGoogle Scholar
  7. 7.
    Horowitz, E.; Zorat, A.: Divide-and-Conquer for Parallel Processing, IEEE Trans. Computers C-32 (1983), 582.Google Scholar
  8. 8.
    Aho, A.V.; Hopcroft, J.E.; Ullman, J.D.: The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.MATHGoogle Scholar
  9. 9.
    Hockney, R.W.; Jesshope, C.R.: Parallel Computers, Hilger, 1981.MATHGoogle Scholar
  10. 10.
    van Leeuwen, J.; Wijshoff, H.A.G.: Data Mappings in Large Parallel Computers, Proceedings GI-13. Jahrestagung, Informatik-Fachberichte Bd. 73, Springer, 1983, pp. 8.Google Scholar
  11. 11.
    Heller, D.: A Survey of Parallel Algorithms in Numerical Linear Algebra, SIAM Rev. 20 (1978), 740.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Bitton, D.; De Witt, D.J.; Hsiao, D.K.; Menon, J.: A Taxonomy of Parallel Sorting, ACM Computing Surveys 16 (1984), 287.MATHCrossRefGoogle Scholar
  13. 13.
    Quinn, M.J.; Deo, N.: Parallel Graph Algorithms, ACM Computing Surveys 16 (1984), 319.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Cooley, J.W.; Tukey, J.W.: An Algorithm for the Machine Calculation of Complex Fourier Series, Math. Comp. 19 (1965), 297.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Nussbaumer H.J.: Fast Fourier Transform and Convolution Algorithms, Springer, 1981.MATHGoogle Scholar
  16. 16.
    Kung, H.T.; Leiserson, CE.: Systolic Arrays (for VLSI), Sparse Matrix Proceedings 1978, SIAM 1979, p. 256.Google Scholar
  17. 17.
    Brent, R.P.; Kung, H.T.; Luk, F.T.: Some Linear-Time Algorithms for Systolic Arrays, IFIP 83, Elsevier/North-Holland, 1983, p. 865.Google Scholar
  18. 18.
    Bojanczyk, A.; Brent, R.P.; Kung, H.T.: Numerically Stable Solution of Dense Systems of Linear Equations Using Mesh-Connected Processors, SIAM J. Sci. Stat. Comput. 5 (1984), 95.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Lord, R.E.; Kowalik, J.S.; Kumar, S.P.: Solving Linear Algebraic Equations on an MIMD Computer, J. ACM 30 (1983), 103.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Hwang, K.; Briggs, F.A.: Computer Architecture and Parallel Processing, McGraw-Hill, 1984.MATHGoogle Scholar
  21. 21.
    Farmer, D.; Toffoli, T.; Wolfram, S. (eds.): Cellular Automata, Proceedings of an Interdisciplinary Workshop, Los Alamos. Special Issue of Physica 10D, North-Holland, 1984.MATHGoogle Scholar
  22. 22.
    Wolfram, S.: Statistical Mechanics of Cellular Automata, Rev. Mod. Phys. 55Google Scholar
  23. (1983), 601.Google Scholar
  24. 23.
    Nassimi, D.; Sahni, S.: Finding Connected Components and Connected Ones on a Mesh-Connected Parallel Computer, SIAM J. Computing 9 (1980), 744.MathSciNetMATHCrossRefGoogle Scholar
  25. 24.
    Hambrusch, S.E.: VLSI Algorithms for the Connected Component Problem, SIAM J. Computing 12 (1983), 354.MathSciNetMATHCrossRefGoogle Scholar
  26. 25.
    Kung, H.T.; Lehman, P.L.: Systolic (VLSI) Arrays for Relational Data Base Operations, Proc. ACM-SIGMOD 1980 International Conference on Management of Data, ACM, 1980, p. 105.Google Scholar
  27. 26.
    Lehman, P.L.: A Systolic (VLSI) Array for Processing Simple Relational Queries, in: H.T. Kung et al. (eds.), VLSI Systems and Computations, Carnegie-Mellon University, Computer Science Press, 1981, p. 285.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • F. Hossfeld
    • 1
  1. 1.Kernforschungsanlage JülichZentralinstitut für Angewandte MathematikJülichFed. Rep. of Germany

Personalised recommendations