Advertisement

Brain Edema pp 344-353 | Cite as

Na+-K+-Activated Adenosine Triphosphatase Activity and Lipoperoxide Metabolites in Microvessels and Parenchymas of the Ischemic Brain

  • Y. Fujita
  • T. Shingu
  • M. Kurihara
  • H. Miyake
  • T. Kono
  • K. Mori

Abstract

To maintain electrolyte homeostasis in the brain, membrane-bound (Na + K)-ATPase is localized at the membranes of capillary endothelium, choroid plexus epithelium, and brain parenchymal cells (glia and neurons). This enzyme is susceptible to ischemic insults [16], and the different susceptibility of each membrane-bound (Na + K)ATPase to ischemic insults may modify the features of brain edema (cytotoxic or vasogenic edema). The precise mechanism of this susceptibility and inactivation of this enzyme in the ischemia is poorly understood.

Key words

Ischemic brain edema Na+-K+-ATPase P-NPPase lipoperoxide prostaglandin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen RJL (1940) The estimation of phosphorus. Biochem J 34:858–865PubMedGoogle Scholar
  2. 2.
    Basu MK, Colacicco G, Picciano PT, Rosenbaum RM, Wittner M (1979) Isolation and characterization of plasma membrane from monolayer cultures of epithelial type II lung cell. Arch Biochem Biophys 198:349–359PubMedCrossRefGoogle Scholar
  3. 3.
    Bazan NG (1976) Free arachidonic and other lipids in nervous system during early ischemia and after electroshock. In: Porcellati G, Amaducci L, Galli C (eds) Central and peripheral nervous system. Plenum, New York, pp 317–335Google Scholar
  4. 4.
    Brendel K, Meezan E, Carson EC (1974) Isolated brain microvessels: A purified, metabolically active preparation from bovine cerebral cortex. Science 185:953–955PubMedCrossRefGoogle Scholar
  5. 5.
    Chan PH, Quan SC, Fishmann RA (1980) Inhibition of rat brain (Na+-K+)ATPase by polyunsaturated fatty acids. Trans Am Soc Neurochem 11:120Google Scholar
  6. 6.
    De Bault LE (1982) Isolation and characterization of the cells of the cerebral microvessels. Adv Cell Neurobiol 3:339–371Google Scholar
  7. 7.
    Demopoulos HB, Flamm ES, Pietronigro DD, Seligman ML (1980) The free radical pathology and microcirculation in the major cerebral nervous system disorders. Acta Physiol Scand(Suppl) 492:91–119Google Scholar
  8. 8.
    Enseleit WH, Domer FR, Jarott DM, Baricos WH (1984) Cerebral phospholipid content and Na+-K+-ATPase activity during ischemia and postischemic reperfusion in the mongolian gerbils. J Neurochem 43:320–327PubMedCrossRefGoogle Scholar
  9. 9.
    Fujishima M, Ishitsuka T, Nakatomi Y, Tamai K, Omae (1981) Changes in local cerebral blood flow following bilateral carotid occlusion in spontaneously hypertensive and normotensive rats. Stroke 12:874–876PubMedCrossRefGoogle Scholar
  10. 10.
    Granström E, Kindahl H, Samuelsson B (1976) A method for measuring the unstable thromboxane A2: radioimmunoassay of the derived mono-O-methyl-thromboxane B2. Prostaglandins 12:929–941PubMedCrossRefGoogle Scholar
  11. 11.
    Hexum TD, Fried R (1979) Effect of superoxide radicals on transport (Na + K) adenosine triphosphatase and protection by superoxide dismutase. Neurochem Res 4:73–82PubMedCrossRefGoogle Scholar
  12. 12.
    Hossmann K-A, Kleinues (1973) Reversibility of ischemic brain damage. Arch Neurol 29:375–382PubMedGoogle Scholar
  13. 13.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall PJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  14. 14.
    MacMillan V (1982) Cerebral Na+-K+-ATPase activity during exposure to and recovery from acute ischemia. J Cereb Blood Flow Metab 2:457–465PubMedCrossRefGoogle Scholar
  15. 15.
    Moncada S, Gryglewski RJ, Bunting S, Vane JR (1976) Lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (Prostaglandin X) which prevents platelet aggregation. Prostaglandins 12:715–737PubMedCrossRefGoogle Scholar
  16. 16.
    Mršulja BB, Djuričić BM, Cvejić V, Mršulja BJ, Abe K, Spats M, Klatzo I (1980) Biochemistry of experimental ischemic brain edema. Adv Neurol 28:217–230PubMedGoogle Scholar
  17. 17.
    Nakamura M, Mori K (1958) Calorimetric determination of inorganic phosphorus in the presence of glucose-1-phosphate and adenosine triphosphate. Nature 182:1441PubMedCrossRefGoogle Scholar
  18. 18.
    Nordström C-H, Rehncrona S, Siesjö BK (1978) Effects of phénobarbital in cerebral ischemia. Part two: restitution of cerebral energy state, as well as glycolytic metabolites, citric acid cycle intermediates and associated amino acids after pronounced incomplete ischemia. Stroke 9:335–343PubMedCrossRefGoogle Scholar
  19. 19.
    Ohkawa H, Ohnishi N, Yagi K (1979) Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358PubMedCrossRefGoogle Scholar
  20. 20.
    Orlowski M, Meister A (1965) Isolation of gamma-glutamyl transpeptidase from dog kidney. J Biol Chem 240:338–348PubMedGoogle Scholar
  21. 21.
    Ottolenghi P (1979) The relipidation of delipidated Na, K-ATPase. Eur J Biochem 99:113–131PubMedCrossRefGoogle Scholar
  22. 22.
    Pong SS, Levine L (1977) Prostaglandin biosynthesis and metabolism as measured by radioimmunoassay. In: Ramwell PW (ed) The prostaglandins, vol 3. Plenum, New York, pp 41–76Google Scholar
  23. 23.
    Post RL, Hegyvery C, Kume S (1972) Activation by adenosine triphosphate in phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem 247:6530–6540PubMedGoogle Scholar
  24. 24.
    Proverbio F, Condrescu-Guidi M, Whittembury G (1975) Ouabain sensitive Na+ stimulation of an Mg+2-dependent ATPase in kidney tissue. Biochem Biophys Acta 394:281–292PubMedCrossRefGoogle Scholar
  25. 25.
    Rehncrona S, Mela L, Siesjö BK (1979) Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia. Stroke 10:437–446PubMedCrossRefGoogle Scholar
  26. 26.
    Rehncrona S, Westerberg E, Akesson B, Siesjö BK (1982) Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia. J Neurochem 38:84–93PubMedCrossRefGoogle Scholar
  27. 27.
    Spagnuolo C, Sauterbin L, Galli G, Racagni G, Galli C, Massari S, Finesso M (1979) PGF, thromboxane B2 and HETE levels in gerbil brain cortex after ligation of common carotid arteries and decapitation. Prostaglandins 18:53–61PubMedCrossRefGoogle Scholar
  28. 28.
    Spatz M, Mršulja BB (1982) Progress in cerebral microvascular studies related to the function of the blood-brain barrier. Adv Cell Neurobiol 3:331–337Google Scholar
  29. 29.
    Taniguchi K, Tonomura Y (1971) Inactivation of Na+-K+-dependent ATPase by phospholipase treatment and its reactivation by phospholipids. J Biochem 69:543–557PubMedGoogle Scholar
  30. 30.
    Yoshida S, Inoh S, Asano T, Sano K, Kubota M, Shimazaki H, Ueda N (1980) Effect of transient ischemia on free fatty acids and possible cause of postischemic injury. J Neurosurg 53:323–331PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Y. Fujita
    • 1
  • T. Shingu
  • M. Kurihara
  • H. Miyake
  • T. Kono
  • K. Mori
  1. 1.Department of NeurosurgeryKurashiki Central HospitalJapan

Personalised recommendations