Senile Dementia of the Alzheimer Type: Morphological and Immunocytochemical Studies

  • J. P. Brion
  • P. van den Bosch de Aguilar
  • J. Flament-Durand
Conference paper
Part of the Advances in Applied Neurological Sciences book series (NEUROLOGICAL, volume 2)


Although recent progress in the isolation of neurofibrillary tangles (NFT) has been made (Ihara et al. 1983; Iqbal et al. 1984), little information is available on the biochemical nature of NFT, their precise relationship with neuron organelles and their etiopathogenesis. Difficulties in carrying out the biochemical analysis of NFT until now have been attributed to their unusual insolubility (Selkoe et al. 1982), although this property also seems a matter of debate (Iqbal et al. 1984). Ultrastructural studies have also clearly pointed out their unique morphological features (Terry 1963; Kidd 1963) Immunohistochemistry offers an interesting approach, since well-defined antibodies reacting with NFT in tissue sections (Anderton et al. 1982; Gambetti et al. 1983) have recently been described.


Neurofibrillary Tangle Senile Plaque Alzheimer Type Senile Dementia Paired Helical Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderton BH, Breinburg D, Downes MJ, Green PJ, Tomlinson BE, Ulrich J, Wood JN, Kahn J (1982) Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants Nature 298: 84–86PubMedCrossRefGoogle Scholar
  2. Brion JP, Couck AM, Flament-Durand J (1984) Ultrastructural study of enriched fractions of “tangles” from human patients with senile dementia of the Alzheimer type. Acta Neuropathol 64: 148–152PubMedCrossRefGoogle Scholar
  3. Brion JP, Couck AM, Passeirero E, Flament-Durand J (1985) Neurofibrillary tangles in Alzheimer’s disease: an immunohistochemical study. J Submicrosc Cytol 17: 89–96PubMedGoogle Scholar
  4. Chiu FC, Norton WT (1982) Bulk preparation of CNS cytoskeleton and the separation of individual neurofilament protein by gel filtration: dye-binding characteristics and amino acid compositions. J Neurochem 39: 1252–1260PubMedCrossRefGoogle Scholar
  5. Cleveland DW, Hwo SH, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116: 207–225PubMedCrossRefGoogle Scholar
  6. Das GD, Hallas BH, Das KG (1979) Transplantation of neural tissues in the brains of laboratory mammals: technical details and comments. Experientia 35: 143–153PubMedCrossRefGoogle Scholar
  7. Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2: 1403PubMedCrossRefGoogle Scholar
  8. De Mey J, Moeremans M, Geuens G, Nuydens R, De Brabander M (1981) High-resolution light and electron-microscopic localization of tubulin with the IGS (immunogold staining) method. Cell Biol Int Rep 5: 889–899PubMedCrossRefGoogle Scholar
  9. Dustin P, Flament-Durand J (1982) Disturbances of axoplasmic transport in Alzheimer’s disease. In: Weis DG, Gorio A (eds) Axoplasmic transport in physiology and pathology. Springer, Berlin Heidelberg New York, pp 131–136Google Scholar
  10. Fellous A, Francon J, Lennon AM, Nunez J (1977) Microtubule assembly in vitro. Purification of assembly-promoting factors. Eur J Biochem 78: 167–174PubMedCrossRefGoogle Scholar
  11. Flament-Durand J, Couck AM (1978) Ultrastructural observations in brain biopsies of Alzheimer’s dementia. VIIIth International congress of neuropathology, Washington. J Neuropathol Exp Neurol 37: 613CrossRefGoogle Scholar
  12. Flament-Durand J, Couck AM (1979) Spongiform alterations in brain biopsies of presenile dementia. Acta Neuropathol 46: 159–162PubMedCrossRefGoogle Scholar
  13. Flament-Durand J, Couck AM, Brion JP (1983) New morphological data observed in human brains with senile dementia of the Alzheimer type (SDAT). In: Knook DL, Calder G, Amaducci L (eds) Aging of the brain and senile dementia: the inventory of EEC potentialities. Eurage Meeting, San Miniato, pp 65–70Google Scholar
  14. Gambetti P, Autilio-Gambetti L, Perry G, Shecket G, Crane RC (1983) Antibodies to neurofibrillary tangles of Alzheimer’s disease raised from human and animal neurofilament fractions. Lab Invest 49: 430–435PubMedGoogle Scholar
  15. Gibbs CJ, Gajduzek DC (1978) Subacute spongiform virus encephalopathies: the transmissible virus dementia. In: Katzman R, Terry RD, Prick KL (eds) Alzheimer’s disease dementia and related disorders. Raven, New York, pp 559–577Google Scholar
  16. Grundke-Iqbal I, Johnson AB, Wisniewski HM, Terry RD, Iqbal K (1979) Evidence that Alzheimer neurofibrillary tangles originate from neurotubules. Lancet 1: 578–580PubMedCrossRefGoogle Scholar
  17. Grundke-Iqbal I, Iqbal K, Tung YC, Wisniewski HM (1984) Alzheimer paired helical filaments: immunochemical identification of polypeptides. Acta Neuropathol 62: 167–177CrossRefGoogle Scholar
  18. Ihara Y, Abraham C, Selkoe DJ (1983) Antibodies to paired helical filaments in Alzheimer’s disease do not recognise normal brain proteins. Nature 304: 727–730PubMedCrossRefGoogle Scholar
  19. Iqbal K, Zaidi T, Thompson CH, Merz PA, Wisniewski HM (1984) Alzheimer paired helical filaments: bulk isolation, solubility, and protein composition. Acta Neuropathol 62: 167–177PubMedCrossRefGoogle Scholar
  20. Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature (Lond) 197: 192–193CrossRefGoogle Scholar
  21. Mareck A, Fellous A, Francon J, Nunez J (1980) Changes in composition and activity of microtubule-associated proteins during brain development. Nature 284: 353–355PubMedCrossRefGoogle Scholar
  22. Perry RH, Blessed G, Perry EK, Tomlinson BE (1980) Histochemical observations on cholinesterase activities in the brains of elderly normal and demented (Alzheimer-type) patients. Age Ageing 9: 9–16PubMedCrossRefGoogle Scholar
  23. Probst A, Basler V, Bron B, Ulrich J (1983) Neuritic plaques in senile dementia of Alzheimer type: a Golgi study in the hippocampal region. Brain Res 268: 249–254PubMedCrossRefGoogle Scholar
  24. Rasool C, Anderton B, Kahn J, Ihara Y, Selkoe D (1983) Differential reaction of Alzheimer neurofibrillary tangles with antineurofilament and anti-PHF antibodies. J Neuropathol Exp Neurol 42: 335CrossRefGoogle Scholar
  25. Rossor MN, Svendsen C, Hunt SP, Mountjoy CQ, Roth M, Iversen LL (1982) The substantia innominata in Alzheimer’s disease: an histochemical and biochemical study of cholinergic marker enzymes. Neurosci Lett 28: 217–222PubMedCrossRefGoogle Scholar
  26. Selkoe DJ, Ihara Y, Salazar FJ (1982) Alzheimer’s disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science 215:1243–1245PubMedCrossRefGoogle Scholar
  27. Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA 70: 765–768PubMedCrossRefGoogle Scholar
  28. Sternberger LA (1979) Immunocytochemistry. Wiley, New YorkGoogle Scholar
  29. Struble RG, Cork RC, Whitehouse PJ, Price DL (1982) Cholinergic innervation in neuritic plaques. Science 216: 413–415PubMedCrossRefGoogle Scholar
  30. Terry RD (1963) The fine structure of neurofibrillary tangles in Alzheimer’s disease. J Neuropathol Exp Neurol 22: 629–642PubMedCrossRefGoogle Scholar
  31. Tsuji S (1974) On the chemical basis of thiocholine methods for demonstration of acetylcholinesterase activities. Histochemistry 42: 99–110PubMedCrossRefGoogle Scholar
  32. van den Bosch de Aguilar P, Langhendries-Weverberg C, Goemare-Vanneste J, Flament-Durand J, Brion JP, Couck AM (1984) Transplantation of human cortex with Alzheimer’s disease into rat occipital cortex: a model for the study of Alzheimer’s disease. Experientia 40: 402–403PubMedCrossRefGoogle Scholar
  33. Yen SH, Gaskin F, Terry RD (1981) Immunocytochemical studies of neurofibrillary tangles. Am J Pathol 104: 77–89PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. P. Brion
    • 1
  • P. van den Bosch de Aguilar
    • 2
  • J. Flament-Durand
    • 1
  1. 1.Laboratoire d’Anatomie pathologiqueUniversité Libre de BruxellesBruxellesBelgique
  2. 2.Université Catholique de LouvainBelgique

Personalised recommendations