Advertisement

Investigation of Regional Cerebral Blood Flow and Metabolism in Dementia

  • W.-D. Heiss
  • G. Pawlik
  • K. Herholz
  • B. Szelies
  • C. Beil
  • K. Wienhard
Conference paper
Part of the Advances in Applied Neurological Sciences book series (NEUROLOGICAL, volume 2)

Abstract

Age-related disorders of the brain like the dementias may be caused by primary disturbances of cerebral blood flow (CBF) or of metabolism. Due to the coupling of functional activity and metabolism, impairment of higher brain function, on the other hand, may lead to a secondary decrease in physiologic variables. Therefore, investigation of CBF and metabolism of various substrates is useful for the detection of such brain disorders and may additionally yield quantifiable data on the severity of the disease. Such quantitative results can be used for a variety of purposes: to monitor the course of the disease in the patient, to formulate prognoses, and to constitute a basis for the objective comparison of various therapeutic protocols. During the last 40 years, various methods for the measurement of CBF and metabolism have been developed.

Keywords

Positron Emission Tomography Cerebral Blood Flow Regional Cerebral Blood Flow Cereb Blood Flow Degenerative Dementia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi A, Reivich M, Ferris S, Christman D, Fowler J, MacGregor R, Farkas T, Greenberg J, Dann R, Wolf A (1982) Regional cerebral glucose metabolism in aging and senile dementia as determined by 18F-deoxyglucose and positron emission tomography. In: Hoyer S (ed) The aging brain. Springer, Berlin Heidelberg New York, pp 187–195CrossRefGoogle Scholar
  2. Bustany P, Henry JF, Sargent T, Zarifian E, Cabanis E, Collard P, Comar D (1983) Local brain protein metabolism in dementia and schizophrenia: in vivo studies with C-L-methionine and positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 208–211Google Scholar
  3. Donley RF, Sundt TM, Anderson RE, Sharbrough FW (1975) Blood flow measurement and the “look through” artifact in focal cerebral ischemia. Stroke 6: 121–131PubMedCrossRefGoogle Scholar
  4. Drayer BP, Wolfson SK, Reinmuth OM, Dujovny M, Boenke M, Cook EE (1978) Xenon-en- hanced CT for analysis of cerebral integrity, perfusion, and blood flow. Stroke 9: 123–130PubMedCrossRefGoogle Scholar
  5. Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, DiChiro G (1983) Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology 33: 961–965PubMedGoogle Scholar
  6. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: Theory, procedure, and normal values. J Comput Assist Tomogr 4: 727–736PubMedCrossRefGoogle Scholar
  7. Frackowiak RSJ, Pozzilli C, Legg NJ, DuBoulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104: 753–778PubMedCrossRefGoogle Scholar
  8. Gottstein U (1969) Interne Therapie der Altersprozesse des Gehirns and seiner Gefäße. Wien Klin Wochenschr 41: 943Google Scholar
  9. Gottstein U, Held K (1979) Effects of aging on cerebral circulation and metabolism in man. In: Gotoh F, Nagai H, Tazaki Y (eds) Cerebral blood flow and metabolism. Munksgaard, Copenhagen, pp 54–55Google Scholar
  10. Greenberg JH, Reivich M, Alavi A, Hand P, Rosenquist A, Rintelmann W, Stein A, Tusa R, Dann R, Christman D, Fowler J, MacGregor B, Wolf A (1981) Metabolic mapping of functional activity in human subjects with the (18F)fluorodeoxyglucose technique. Science 212: 670–680CrossRefGoogle Scholar
  11. Hachinski VC, Iliff LD, Zilkha E, DuBoulay GH, McAllister VL, Marshall J, Ross Russell RW, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32: 632–637PubMedGoogle Scholar
  12. Harrison MJG, Thomas DJ, DuBoulay GH, Marshall J (1979) Multi-infarct dementia. J Neurol Sci 40: 97–103PubMedCrossRefGoogle Scholar
  13. Heiss WD, Phelps ME (1983) Positron emission tomography of the brain. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Heiss WD, Pawlik G, Herholz K, Wagner R, Göldner H, Wienhard K (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4: 212–223PubMedCrossRefGoogle Scholar
  15. Heiss WD, Pawlik G, Herholz K, Wagner R, Wienhard K (1985) Regional cerebral glucose metabolism in man during wakefulness, sleep and dreaming. Brain Res 327: 362–366PubMedCrossRefGoogle Scholar
  16. Hoyer S, Oesterreich K, Weinhardt F, Krüger G (1975) Veränderungen von Durchblutung and oxydativem Stoffwechsel des Gehirns bei Patienten mit einer Demenz. J Neurol 210: 227–237PubMedCrossRefGoogle Scholar
  17. Hoyer S, Krüger G, Oesterreich K, Weinhardt F (1977) Effects of drugs on cerebral blood flow and oxidative metabolism in patients with dementia. In: Meyer JS, Lechner H, Reivich M (eds) Cerebral vascular disease. Excerpta Medica, Amsterdam, pp 25–28Google Scholar
  18. Ingvar DH, Gustafson L (1970) Regional cerebral blood flow in organic dementia with early onset. Acta Neur Scand [Suppl] 43: 42–73Google Scholar
  19. Jones T, Chesler DA, Ter-Pogossian MM (1976) The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49:339–343PubMedCrossRefGoogle Scholar
  20. Kety SS (1956) Human cerebral blood flow and 02 consumption related to aging. Ass Res Neur Ment Dis Proc 35: 31–45Google Scholar
  21. Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentration. Am J Physiol 143: 53–66Google Scholar
  22. Kuhl DE, Barrio JR, Huang SC, Selin C, Ackerman RF, Lear JL, Wu JL, Lin TH, Phelps ME (1982a) Quantifying local cerebral blood flow by N-isopropyl-p-(123I)Iodoamphetamine (IMP) tomography. J Nucl Med 23:196–203Google Scholar
  23. Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J (1982b) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed torno-graphic scan. Ann Neurol 12:425–434CrossRefGoogle Scholar
  24. Kuhl DE, Metter EJ, Riege WH, Phelps ME (1982c) Effects of human aging on patterns of local cerebral glucose utilization determined by the (18F)fluorodeoxyglucose method. J Cereb Blood Flow Metab 2:161–171CrossRefGoogle Scholar
  25. Kuhl DE, Metter EJ, Riege WH, Hawkins RA, Mazziotta JC, Phelps E, Kling AS (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia, and Alzheimer’s disease. J Cereb Blood Flow Metab [Suppl 1] 3: S494–5495Google Scholar
  26. Lammertsma AA, Jones T (1983) Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method. J Cereb Blood Flow Metab 3: 416–424PubMedCrossRefGoogle Scholar
  27. Lassen NA (1981) Regional activation of brain cortex in man revealed by 133Xe inhalation flow tomography. Eur Neurol 20: 291–293PubMedCrossRefGoogle Scholar
  28. Lassen NA, Ingvar DH (1963) Regional cerebral blood flow measurement in man. Arch Neurol (Chic) 9: 615–622Google Scholar
  29. Lassen NA, Feinberg I, Lane MH (1960) Bilateral studies of cerebral oxygen uptake in young and aged normal subjects and in patients with organic dementia. J Clin Invest 39: 491–500PubMedCrossRefGoogle Scholar
  30. Leon MJ de, Ferris SH, George AE, Reisberg B, Christman DR, Kricheff II, Wolf AP (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3: 391–394PubMedCrossRefGoogle Scholar
  31. Lavy S, Melamed E, Bentin S, Cooper G, Rinot Y (1978) Bihemispheric decreases of regional cerebral blood flow in dementia: correlation with age-matched normal controls. Ann Neurol 4: 445–450PubMedCrossRefGoogle Scholar
  32. Mazziotta JC, Phelps ME, Miller J, Kuhl DE (1981) Tomographic mapping of human cerebral metabolism: normal unstimulated state. Neurology 31: 503–516Google Scholar
  33. Melamed E, Lavy S, Bentin S, Cooper G, Rinot Y (1980) Reduction in regional cerebral blood flow during normal aging in man. Stroke 11: 31–35PubMedCrossRefGoogle Scholar
  34. Metter EJ, Riege WH, Kuhl DE, Phelps ME (1983) Differences in regional glucose metabolic intercorrelations with aging. J Cereb Blood Flow Metab [Suppl 1] 3: S482 - S483Google Scholar
  35. Naritomi H, Meyer JS, Sakai F, Yamaguchi F, Shaw T (1979) Effects of advancing age on regional cerebral blood flow. Studies in normal subjects and subjects with risk factors for atherothrombotic stroke. Arch Neurol 36: 410–416PubMedGoogle Scholar
  36. Obrist WD, Chivian E, Cronqvist S, Ingvar DH (1970) Regional cerebral blood flow in senile and presenile dementia. Neurology 20: 315–322PubMedGoogle Scholar
  37. Perez FI, Mathew NT, Stump DA, Meyer JS (1977) Regional cerebral blood flow statistical patterns and psychological performance in multi-infarct dementia and Alzheimer’s disease. Can J Neurol Sci 4: 53–62PubMedGoogle Scholar
  38. Phelps ME, Mazziotta JC, Huang SC (1982) Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 2: 113–162PubMedCrossRefGoogle Scholar
  39. Rapoport SI, Duara R, Horwitz B, Kessler RM, Sokoloff L, Ingvar DH, Gray C, Cutler N (1983) Brain aging in 40 healthy men: rCMRglc and correlated functional activity in various brain regions in the resting state. J Cereb Blood Flow Metab [Suppl 1] 3: 484–485Google Scholar
  40. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137PubMedGoogle Scholar
  41. Sokoloff L (1966) Cerebral circulatory and metabolic changes associated with aging. Res Publ Assoc Res Nery Ment Dis 41: 237–254Google Scholar
  42. Sokoloff L, Reivich M, Kennedy D, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The 14C-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916PubMedCrossRefGoogle Scholar
  43. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Raichle ME (1975) A positron emission transverse tomograph (PETT) for the three-dimensional and non-invasive measure of cerebral hemodynamics and metabolism. In: Harper AM, Jennett WB, Miller JD, Rowan JO (eds) Blood flow and metabolism in the brain. Churchill Livingstone, Edinburgh, p 720–724Google Scholar
  44. Yamaguchi F, Meyer JS, Yamamoto M, Sakai F, Shaw T (1980) Noninvasive regional cerebral blood flow measurements in dementia. Arch Neurol 37: 410–418PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • W.-D. Heiss
  • G. Pawlik
  • K. Herholz
  • B. Szelies
  • C. Beil
  • K. Wienhard
    • 1
  1. 1.Max-Planck-Institut für neurologische ForschungKöln 91 (Merheim)Germany

Personalised recommendations