Advertisement

Positron Tomography and the Differential Diagnosis and Pathophysiology of Alzheimer’s Disease

  • R. P. Friedland
  • T. F. Budinger
  • W. J. Jagust
  • E. Koss
  • S. Derenzo
  • R. H. Huesman
  • Y. Yano
Part of the Advances in Applied Neurological Sciences book series (NEUROLOGICAL, volume 2)

Abstract

The diagnosis of Alzheimer’s disease (AD) remains a diagnosis of exclusion. While less frequent varieties of non-Alzheimer dementia are now diagnosed with relative ease using widely available laboratory tests, the definitive diagnosis of Alzheimer’s disease still requires the examination of excised tissue. However, recently developed methods for the noninvasive in vivo quantitation of cerebral rates of glucose use have demonstrated regional abnormalities in Alzheimer subjects which are of diagnostic import and can offer us some insight into the pathophysiology of the disease.

Keywords

Positron Emission Tomography Single Photon Emission Compute Tomography Positron Emission Tomographic Positron Tomography Positron Emission Tomographic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson DF, Kuhl DE, Hawkins RA, Phelps ME, Cummings JL, Tsai SY (1983) The fluorodeoxyglucose F scan in Alzheimer’s disease and multi-infarct dementia. Arch Neurol 40: 711–714PubMedGoogle Scholar
  2. Brun A (1984) An overview of light and electron microscopic changes. In: Alzheimer’s disease: the standard reference. Free Press, New York, pp 37–47Google Scholar
  3. Brun A, Englund E (1981) Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 5: 549–564PubMedCrossRefGoogle Scholar
  4. Budinger TF, Derenzo SE, Huesman RH (1984) Instrumentation for positron emission tomography. Ann Neurol [Suppl] 15: 35–43Google Scholar
  5. Budinger TF, Huesman RH, Knittel B, Friedland RP, Derenzo SE (1985) Physiological modeling of dynamic measurements of metabolism using positron emission tomography. In: Greitz T et al. (ed) The metabolism of the human brain: studies with positron emission tomography. Raven, New York, pp 165–183Google Scholar
  6. Chase TN, Foster NL, Fedio P, Brooks R, Mansi L, DiChiro G (1984) Regional cortical dysfunction in Alzheimer’s disease as determined by positron emission tomography. Ann Neurol [Suppl] 15: 170–174Google Scholar
  7. Cohen MB, Graham LS, Lake R, Metter EJ, Kulkami MK, Kling AS, Yamada JL, Fitten J (1984) SPECT imaging of 1–123 IMP in dementia. Clin Nucl Med 9: 30CrossRefGoogle Scholar
  8. Frackowiak RSJ, Pozzilli C, Legg NJ, DuBoulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilization in dementia: a clinical and physiological study with oxygen-15 and positron tomography. Brain 104: 753–778PubMedCrossRefGoogle Scholar
  9. Friedland RP, Yano Y, Budinger TF, Ganz E, Huesman RH, Derenzo SE, Knittel B (1983 a) Quantitative evaluation of blood brain barrier integrity in Alzheimer-type dementia: positron emission tomographic studies with rubidium-82. Eur Neurol 22 [Suppl 2]:19–20Google Scholar
  10. Friedland RP, Budinger TF, Ganz E, Yano Y, Mathis CA, Koss B, Ober BA, Huesman R, Derenzo SE (1983 b) Regional cerebral metabolic alterations in dementia of the Alzheimer-type: positron emission tomography with 18-fluorodeoxyglucose. J Comput Assist Tomogr 7:590598Google Scholar
  11. Friedland RP, Budinger TF, Yano Y, Huesman RH, Knittel B, Derenzo SE, Koss B, Ober BA (1983 c) Regional cerebral metabolic alterations in Alzheimer-type dementia: kinetic studies with 18-fluorodeoxyglucose. J Cereb Blood Flow Metabol 3 [Suppl l]:510–511Google Scholar
  12. Friedland RP, Budinger TF, Brant-Zawadzki M, Jagust WJ (1984 a) The diagnosis of Alzheimer-type dementia: a preliminary comparison of positron emission tomography and proton magnetic resonance. JAMA 252: 2750–2752Google Scholar
  13. Friedland RP, Prusiner SB, Jagust WJ, Budinger TF, Davis RL (1984 b) Bitemporal hypometabolism in Creutzfeldt-Jakob disease measured by positron emission tomography with [18F]2fluoro-deoxyglucose. J Comput Assist Tomogr 8: 978–981Google Scholar
  14. Friedland RP, Budinger TF, Jagust WJ, Yano Y, Huesman RH, Knittel B ( 1985 a) Positron emission tomography and the blood brain barrier in Alzheimer’s disease. In: Lassen N, Cahn J (eds) Acute cerebrovascular diseases pathopharmacology: new brain imaging in cerebro-vascular diseases. Libbey, ParisGoogle Scholar
  15. Friedland RP, Budinger TF, Koss E, Ober BA (1985 b) Alzheimer’s disease: anterior-posterior and lateral hemispheric alterations in cortical glucose utilization. Neurosci Lett 53: 235–240Google Scholar
  16. Friedland RP, Brun A, Budinger TF (1985 c) Pathological and positron emission tomographic correlations in Alzheimer’s disease. Lancet 1: 228Google Scholar
  17. Hill TC (1984) Clinical applications of single photon emission computed tomography. Society of Nuclear Medicine, Los Angeles Jagust WJ, Friedland RP, Budinger TF (to be published) Positron emission tomography with [18F] fluorodeoxyglucose differentiates normal pressure hydrocephalus from Alzheimer-type dementia. J Neurol Neurosurg Psychiatry (to be published)Google Scholar
  18. Koss E, Friedland RP, Ober BA, Jagust WJ (1985) Lateral hemispheric asymmetries of glucose utilization are different in early and late onset Alzheimer-type dementia. Am J Psychiatry 142: 638–640PubMedGoogle Scholar
  19. Kuhl DE, Metter EJ, Riege WH, Phelps ME (1982) Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab 2: 163–171PubMedCrossRefGoogle Scholar
  20. Kuhl DE, Metter EJ, Riege WH, Hawkins RA (1983) Determinations of cerebral glucose utilization in dementia using positron emission tomography. Proceedings of the International Conference on Alzheimer’s Disease, 1983. WHO, Copenhagen, Danish medical Bulletin 32 [l]: 51–55Google Scholar
  21. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnoses of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34: 939–944PubMedGoogle Scholar
  22. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the Rhesus monkey. J Comp Neurol 214: 170–197PubMedCrossRefGoogle Scholar
  23. Phelps ME, Huang S-C, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxyD-glucose: validation of method. Ann Neurol 6: 371–388PubMedCrossRefGoogle Scholar
  24. Reivich M (1985) PET, NMR and XCT in brain diseases. In: Lassen N, Cahn J (eds) Acute cerebrovscular diseases pathopharmacology: new brain imaging technics in cerebrovascular diseases, Libbey, ParisGoogle Scholar
  25. Reivich M, Kuhl D, Wolf A, Greenbeerg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The (18F)-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137PubMedGoogle Scholar
  26. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, practice and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • R. P. Friedland
    • 1
    • 2
    • 3
  • T. F. Budinger
    • 3
    • 4
  • W. J. Jagust
    • 1
    • 2
    • 3
  • E. Koss
    • 1
    • 2
    • 3
  • S. Derenzo
    • 3
  • R. H. Huesman
    • 3
  • Y. Yano
    • 3
  1. 1.VA Medical CenterMartinezUSA
  2. 2.Department of NeurologyUniversity of CaliforniaDavisUSA
  3. 3.Donner LaboratoryUniversity of CaliforniaBerkeleyUSA
  4. 4.Dept. of RadiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations