Skip to main content

The Role of Cloudphysics in Atmospheric Multiphase Systems: Ten Basic Statements

  • Conference paper
Chemistry of Multiphase Atmospheric Systems

Part of the book series: NATO ASI Series ((ASIG,volume 6))

Abstract

The role of cloud physics in atmospheric multiphase systems is summarized below in the form of ten basic statements: 1: In the atmosphere, the phase change of water vapor to water drops is a heterogeneous process involving aerosol particles (AP). 2: The phase change from water vapor to drops involves “preferred” AP of specific characteristics. 3: The water soluble portion of atmospheric aerosol particles, picked up by nucleation or impaction scavenging, goes into solution inside the cloud and rain drops, while the water insoluble portion remains suspended in particulate from inside the drops. 4: Most clouds in the atmosphere evaporate again after they had formed. 5: The phase change in the atmosphere from water vapor to ice crystals is a heterogeneous process involving AP. 6: In the atmosphere, the phase change to ice involves “preferred” AP of specific characteristics. 7: The atmosphere contains aerosol particles of a wide range of sizes and number concentrations which are related to each other in a characteristic manner, analogously for all air masses. 8: Atmospheric clouds and precipitation contain hydrometeors of a wide range of sizes and number concentrations which are related to each other in a manner depending characteristically on: (1) the aerosol of the air mass in which the cloud formed, (2) the dynamics of the cloud, (3) the microphysical processes resulting from interaction between the cloud particles, and (4) on whether the hydrometeors consist of water particles or ice particles. 9: Atmospheric clouds contain hydrometeors of a wide range of shapes. These decisively affect the flow field around them, their fall velocity and their fall mode. 10: The development of precipitation particles is a result of four basic mechanisms: (1) Diffusional growth of ice crystals surrounded by a water saturated atmosphere filled with cloud drops; (2) Stochastic growth of snow crystals colliding with and sticking to other snow crystals to form snow flakes; (3) Semi-continuous growth of snow crystals by collision with supercooled drops to form graupel and hailstones; (4) Stochastic growth of cloud drops colliding and coalescing with other cloud drops to form rain drops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, B. J., and Hallet, J. (1976): Supersaturation and time dependence of ice nucleation from vapor on single crystal substrates. J. Atmos. Sei. 33, 822–832.

    Article  Google Scholar 

  • Baboolal, L., Pruppacher, H. R., and Topalian, J. (1981): A sensitivity study of a theoretical model of SO2 scavenging by water drops in air. J. Atmos. Sei. 38, 856–870.

    Article  CAS  Google Scholar 

  • Barrie, L., and Georgii, H. W. (1976): An experimental investigation of the absorption of sulfur dioxide by water drops containing heavy metal ions. Atmos. Environm. 10, 743–749.

    Article  CAS  Google Scholar 

  • Battan, L. J., and Reitan, C. H. (1957): Artificial Stimulation of Rain, 184, Pergamon Press, New York.

    Google Scholar 

  • Beard, K. V. (1980): The effects of altitude and electric force on the terminal velocity of hydrometeors. J. Atmos. Sei. 37, 1363–1374.

    Article  Google Scholar 

  • Beard, K. V., and Pruppacher, H. R. (1971): A windtunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sei. 28, 1455–1464.

    Article  Google Scholar 

  • Beheng, K. D. (1978): Numerical simulation of graupel development. J. Atmos. Sei. 35, 683–689.

    Article  Google Scholar 

  • Berry, E. X. (1973): Final Rept. to NSF on grant GH 213350. Desert. Res. Inst. Reno, Nevada.

    Google Scholar 

  • Borovikov (1963): Cloud Physics, Israel Progr. for Sei. Transl., U.S. Dept. of Commerce, Techn. Series, Washington, D.C.

    Google Scholar 

  • Brown, R. (1980): A numerical study of radiation fog with an explicit formulation of the microphysics. Quart. J. Roy. Meteor. Soc. 106, 781–802.

    Article  Google Scholar 

  • Czerwinski, N., and Pfisterer, W. (1972): Typen von Regentropfenspektren. J. de Rech. Atmos. 6, 89–105.

    Google Scholar 

  • d’Almeida, G., and Schuetz, L. (1983): Number, Mass and Volume distribution of mineral aerosol and soils in the Sahara. J. of Climate and Appl. Meteor. 22, 233–243.

    Article  Google Scholar 

  • Dlugi, R. J., and Jordan, S. (1982): Heterogenous SO2 oxidation. J. Hungarian Meteor. Service 86, 82–88.

    Google Scholar 

  • Eldrigde, R. G. (1957): Measurements of cloud drop size distributions. J. Meteor. 14, 55–59.

    Article  Google Scholar 

  • Federer, B., and Waldvogel, A. (1975): Hail and raindrop size distributions from a Swiss Multicell storm. J. Appl. Meteor. 14, 91–97.

    Article  Google Scholar 

  • Fitzgerald, J. W. (1974): Effect of aerosol composition on cloud droplet size distribution: a numerical study. J. Atmos. Sei. 31, 1358–1367.

    Article  Google Scholar 

  • Garland, J. A. (1971): Some fog droplet size distributions obtained by an impaction method. Quart. J. R. Met. Soc. 97, 483–494.

    Article  Google Scholar 

  • Georgii, H. W., Jost, D., and Fitze, W. (1971): Konzentration und Groessenverteilung des Sulfataerosols in der unteren und mittleren Troposphaere. Ber. Inst. Meteor. Geophys. Nr. 23, Univ. Frankfurt, FRG.

    Google Scholar 

  • Gori, E. G., and Joss, J. (1980): Shape of raindrop size distributions simultaneously observed at three altitudes. Preprints, Cloud Phys. Conference, Clermont-Ferrand, France, 149–152.

    Google Scholar 

  • Grosch, M. L. (1978): Reaktionen von SO2 an Aerosolpartikeln unter atmosphaerischen Bedingungen, Ber. Inst. Meteor. Geophys. Nr. 36, Univ. Frankfurt, FRG.

    Google Scholar 

  • Grover, S. (1980): A numerical investigation of the efficiency with which aerosol particles collide with drops. Ph.D. Thesis, Dept. Atmos. Sci., University of California, Los Angeles, California.

    Google Scholar 

  • Gunn, R., and Marshall, J. S. (1958): The distribution with size of aggregate snowflakes. J. Meteor. 15, 452–461.

    Article  Google Scholar 

  • Hegg, D. A., and Hobbs, P. V. (1982): Cloud water chemistry and the production of sulfate in clouds. Atmos. Environ. 15, 1597–1604.

    Google Scholar 

  • Hegg, D. A., and Hobbs, P. V. (1983): Precipitation Scavenging, Dry Deposition and Resuspension, Vol. I, 79–89. Elsevier Publ. Co., New York.

    Google Scholar 

  • Hegg, D. A., Hobbs, P. V., and Radke, L. F. (1980): A preliminary study of cloud chemistry. Preprints, Cloud Phys. Conference at Clermont-Ferrand, France, 7–10.

    Google Scholar 

  • Herzegh, P. H., and Hobbs, P. V. (1980): Observations of snow size spectra in frontal clouds, Preprint, Cloud Phys. Conference, Clermont-Ferrand, France, 201–204.

    Google Scholar 

  • Hindman, E. E., Hobbs, P. V., and Radke, L. F. (1977): Cloud condensation nucleus size distributions and their effects on cloud droplet distributions. J. Atmos. Sci. 34, 951–956.

    Article  Google Scholar 

  • Hobbs, P. V. (1978): Res. Rept. XIII, Univ. of Washington, Dept. Atmospheric Sciences, Cloud Physics Group.

    Google Scholar 

  • Hobbs, P. V. (1978): Res. Rept. VI, Cloud Phys. Group, Dept. Atmos. Sci., University of Washington, Wash.

    Google Scholar 

  • Hobbs, P. V., and Atkinson, D. G. (1976): The concentration of ice particles in orographic clouds and cyclonic storms over the Cascade Mountains. J. Atmos. Sci. 33, 1362–1374.

    Article  Google Scholar 

  • Hobbs, P. V., Politovich, M. K., and Radke, L. F. (1980); The structure of summer convective clouds in Eastern Montana. I. J. App. Meteor. 19, 645–663.

    Article  Google Scholar 

  • Hoffer, T. E. (1960): A laboratory investigation of droplet freezing. Techn. Note Nr. 22, Univ. of Chicago, Chicago, I11.

    Google Scholar 

  • Houze, R. H., Hobbs, P. V., Herzegh, P. H., and Parsons, D. B. (1979): Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci. 36, 156–162.

    Article  Google Scholar 

  • Hudson, J. G. (1980): Microphysics of coastal fog and stratus. Preprints, Cloud Phys. Conf., Clermont-Ferrand, France, 205–208.

    Google Scholar 

  • Jaenicke, R. (1978): Ueber die Dynamik atmosphaerischer Aitkenteilchen. Ber. Bunsen- gesellschaft, Ser. Phys. Chem. 82, 1198–1202.

    CAS  Google Scholar 

  • Jaenicke, R. (1982): Chemistry of the unpolluted and polluted Troposphere, 341–373, D. Reidel Publ. Co., Dordrecht, Holland

    Google Scholar 

  • Jiusto., J. E., and Lala, G. G. (1981): CCN-Supersaturation Spectra Slopes. J. de Rech. Atmos. 15, 303–311.

    Google Scholar 

  • Joss, J., Thams, J. C., and Waldvogel, A. (1968): The variations of rain drop size distributions at Locarno. Preprint, Cloud Phys. Conference, Toronto, 369–373.

    Google Scholar 

  • Knight, N. (1981): The climatology of hailstone embryos. J. Appl. Meteor. 20, 750–755.

    Article  Google Scholar 

  • Leaitch, W. R. (1983): Precipitation Scavenging, Dry Deposition and Resuspension, Vol. 1. 53–69, Elsevier Publ. Co., New York.

    Google Scholar 

  • Leary, C. A., and Houze, R. A. (1979): Melting and evaporation of hydrometeors in precipitation from anvil clouds. J. Atmos. Sci. 35, 669–679.

    Article  Google Scholar 

  • LeClair, B. P., Hamielec, A. E., Pruppacher, H. P., and Hall, W. D. (1972): A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity. J. Atmos. Sci. 29, 728–740.

    Article  Google Scholar 

  • Lee, I. Y., Haenel, G., and Pruppacher, H. R. (1980): A numerical determination of the evolution of cloud drop spectra due to condensation on natural aerosol particles. J. Atmos. Sci. 37, 1839–1853.

    Article  Google Scholar 

  • Lew, J., and Pruppacher, H. R. (1983): A theoretical determination of the capture efficiency of small columnar ice crystals by large cloud drops. J. Atmos. Sci. 40, 139–145.

    Article  Google Scholar 

  • Martin, J., Wang, P. K., and Pruppacher, H. R. (1980): A theoretical determination of the efficiency with which aerosol particles are collected by simple ice crystal plates. J. Atmos. Sci. 37, 1628–1638.

    Article  Google Scholar 

  • Mei-Yuan, H. (1963): Microstructure of cumulus clouds. Izv. Akad. Nauk. SSSR, Ser. Geofiz. No. 2, 362–376.

    Google Scholar 

  • Murakani, H., Hiramatsu, C., and Magono, C. (1981): Observations of aerosol scavenging by falling snow crystals at two sites of different heights. J. Meteor. Soc. Japan, 59, 763–771.

    Google Scholar 

  • Parungo, P., Ackermann, E., and Proulx, H. (1976): Natural ice nuclei. J. Rech. Atmos. 10, 45–60.

    CAS  Google Scholar 

  • Passarelli, R. E. (1978): Techn. Note, Nr. 52, Dept. of Geophys. Sci., Univ. of Chicago, Chicago.

    Google Scholar 

  • Passarelli, R. E., and Srivastava, R. C. (1979): A new aspect of snow flake aggregation theory. J. Atmos. Sci. 36, 484–493.

    Article  Google Scholar 

  • Pitter, R. L. (1977): A re-examination of riming on thin ice plates. J. Atmos. Sci. 34, 684–685.

    Article  Google Scholar 

  • Pitter, R. L., and Pruppacher, H. R. (1974): A numerical investigation of collision efficiencies of simple ice plates colliding with supercooled drops. J. Atmos. Sci. 31, 551–559.

    Article  Google Scholar 

  • Pitter, R. L., Pruppacher, H. R., and Hamielec, H. E. (1973): A numerical study of viscous flow past a thin oblate spheroid at low and intermediate Reynolds numbers. J. Atmos. Sci. 30, 125–134.

    Article  Google Scholar 

  • Prodi, F. (1976): Scavenging of aerosol particles by growing ice crystals. Preprints, Cloud Phys. Conference, Boulder, Colorado, 70–75.

    Google Scholar 

  • Pruppacher, H. R., and Klett, J. D. (1978): Microphysics of Clouds. D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Pruppacher, H. R., and Lew. J. (1983): private communication.

    Google Scholar 

  • Pruppacher, H. R., and Rasmussen, R. (1979): A windtunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air. J. Atmos. Sci. 36, 1255–1260.

    Article  Google Scholar 

  • Radke, L. (1983): Precipitation Scavenging, Dry Deposition and Pesuspension, Vol. I, 71–78. Elsevier Publ. Co., New York.

    Google Scholar 

  • Radke, L. F., Hobbs, P. V., and Eltgroth, M. W. (1980): Scavenging of aerosol particles by precipitation. J. Appl. Meteor. 19, 715–722.

    Article  Google Scholar 

  • Radke, L. F., Hobbs, P. V., and Pinnons, J. E. (1976): Observations of cloud condensation nuclei, sodium containing particles, ice nuclei, and the light scattering coefficient near Barrow, Alaska. J. Atmos. Sci. 15, 982–995.

    CAS  Google Scholar 

  • Roach, W. T. (1976): On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet. Quart. J. Roy. Meteor. Soc. 102, 361–372.

    Article  Google Scholar 

  • Roberts, P., and Hallett, J. (1968): A laboratory study of ice nucleating properties of some mineral particles. Quart. J. Roy. Meteor. Soc. 94, 25–34.

    Article  Google Scholar 

  • Rosinski, J., Yamate, G., and Parungo, F. (1980): Size distribution of inorganic and organic ice-forming nuclei present in downdrafts of convective storms. Meteor. Rundschau 33, 97–106.

    Google Scholar 

  • Rucklidge, J. -(1965): The examination by electron microscope of ice crystal nuclei from cloud chamber experiments. J. Atmos. Sci. 22, 301–308.

    Article  CAS  Google Scholar 

  • Runca-Koeberich, D. R. (1979): Ein Beitrag zur Konstitution atmosphaerischer eisbildender Kerne. Ber. Inst. Meteor. Geophys. Nr. 37, Univ. Frankfurt, FRG.

    Google Scholar 

  • Schaller, R. C., and Fukuta, N. (1979): On the hydrodynamic behavior of supercooled water drops interacting with columnar ice crystals. J. Atmos. Sci. 36, 1788–1802.

    Article  CAS  Google Scholar 

  • Schlamp, R. J., and Pruppacher, H. R. (1977): Pure and Appl. Geophys. 115, 805–843.

    Article  Google Scholar 

  • Schlamp, R. J., Pruppacher, H. R., and Hamielec, A. E. (1975): A numerical investigation of the efficiency with which simple columnar ice crystals collide with supercooled water drops. J. Atmos. Sci. 32, 2330–2337.

    Article  CAS  Google Scholar 

  • Soulange, R. G., Andraud, G., and Isaka, A. (1980): Etude d’un cas de zone d1 accumulation d’eau dans un cumulonimbus tropical. J. de Rech. Atmos. 14, 477–486.

    Google Scholar 

  • Stein, D., and Georgii, H. W. (1983): Messung der Groessenverteilung atmosphaerischer Gefrierkerne unter Beruecksichtigung der Feuchte. Meteor. Rundschau 36, 127–132.

    Google Scholar 

  • Twomey, S., and Wojciechowski, T. A. (1969): Observation of the geographical variation of cloud nuclei. J. Atmos. Sci. 26, 684–688.

    Google Scholar 

  • Twomey, S., and Warner, K. (1967): Comparison of measurements of cloud droplets and cloud nuclei. J. Atmos. Sci. 24, 702–793.

    Article  Google Scholar 

  • Walceck, C., and Pruppacher, H. R. (1984): On the scavenging of SO2 by cloud and rain drops. III. J. Atmos. Chem. in press.

    Google Scholar 

  • Waldman, J. M., Munger, J.W., Jacob, D. J., Flagan, R. C., Morgan, J.J., and Hoffmann, M. R. (1982): Chemical composition of acid fog. Science 218, 677–679.

    Article  CAS  Google Scholar 

  • Waldvogel, A. (1974): The No-jump of raindrop spectra. J. Atmos. Sci. 31, 1067–1078.

    Article  Google Scholar 

  • Wang, P. K., Grover, S. N., and Pruppacher, H. R. (1978): On the effect of electric charges on the scavenging of aerosol particles by cloud and small rain drops. J. Atmos. Sci. 35, 1735–1743.

    Article  Google Scholar 

  • Warner, J. (1968): The supersaturation in natural clouds. J. de Rech. Atmos. 3, 233–237.

    Google Scholar 

  • Warner, J. (1969): The microstructure of cumulus clouds, I. J. Atmos. Sci. 26, 1049–1059.

    Article  Google Scholar 

  • Warner, J. (1970): On steady-state one dimensional models of cumulus convection. J. Atmos. Sci. 27, 1035–1040.

    Article  Google Scholar 

  • Whitby K. T. (1978): The physical characteristics of sulfur aerosols. Atmos. Environ. 12, 135–159.

    Article  CAS  Google Scholar 

  • Winkler, P. (1967): Wachstum natuerlicher Aerosolteilchenproben. Diploma Thesis. Meteor. Inst., University of Mainz, FRG.

    Google Scholar 

  • Yagi, T., and Uyeda, H. (1980): Different size distributions of snow based on meteorological situations. Preprints, Cloud Physics Conference, Clermont-Ferrand, France, 231–234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pruppacher, H.R. (1986). The Role of Cloudphysics in Atmospheric Multiphase Systems: Ten Basic Statements. In: Jaeschke, W. (eds) Chemistry of Multiphase Atmospheric Systems. NATO ASI Series, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70627-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70627-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70629-5

  • Online ISBN: 978-3-642-70627-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics