Skip to main content

Increased Uptake of Nucleosides in the Activation of Sea Urchin Eggs

  • Conference paper

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Sea urchins have long provided a convenient and definable system for the study of cellular activation and early embryonic development. A single female, at the simple request of injecting isoosmotic KCl into the body cavity, may shed as much as 20 ml of fully mature eggs, each ml containing 2 × 106 eggs. A single male, at the same request, may shed as much as 5 ml of undiluted semen, each ml containing 10–100 × 109 spermatozoa. In vitro fertilization is accomplished simply by mixing eggs and sperm together in seawater. A most important advantage of this system is that the ionic composition of the external medium, seawater, is known, and under routine laboratory conditions, may be completely defined. Fertilized Strongylocentrotus purpuratus eggs will reach first cell division approx. 90 min after insemination at 15 °C. The next five divisions occur every 60 min and remain synchronous within each embryo and within a given culture. Development proceeds synchronously through easily recognizable embryonic stages (blastula, gastrula) to an early larval stage (pluteus) within 3 days. Several detailed and comprehensive reviews of fertilization and early development of the sea urchin are available elsewhere (Harvey 1956,Giudice 1973; Stearns 1974; Epel 1978; Nishioka 1982; Whitaker and Steinhardt 1982).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brachet J, DePetrocellis B (1981) The effect of aphidicolin, an inhibitor of DNA replication, on sea urchin development. Exp Cell Res 135:179–189

    Article  PubMed  CAS  Google Scholar 

  • Brandriff B, Hinegardner RT, Steinhardt R (1975) Development and life cycle of the partheno-genetically activated sea urchin embryo. J Exp Zool 192:13–24

    Article  PubMed  CAS  Google Scholar 

  • Chambers EL (1976) Na is essential for activation of the inseminated sea urchin egg. J Exp Zool 197:149–154

    Article  PubMed  CAS  Google Scholar 

  • Epel D (1972) Activation of an Na+-dependent amino acid transport system upon fertilization of sea urchin eggs. Exp Cell Res 72:74–89

    Article  PubMed  CAS  Google Scholar 

  • Epel D (1977) The program of fertilization. Sci Am 237:128–139

    Article  PubMed  CAS  Google Scholar 

  • Epel D (1978) Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. In: Moscona AA, Monroy A (eds) Current topics in developmental biology, vol 12. Academic, New York, pp 185–246

    Chapter  Google Scholar 

  • Epel D, Steinhardt R, Humphreys T, Mazia D (1974) An analysis of the partial metabolic derepression of sea urchin eggs by ammonia; the existence of independent pathways in the program of activation at fertilization. Dev Biol 40:245–255

    Article  PubMed  CAS  Google Scholar 

  • Fansler B, Loeb LA (1969) Sea urchin nuclear DNA polymerase. II. Changing localization during early development. Exp Cell Res 57:305–310

    Article  PubMed  CAS  Google Scholar 

  • Giudice G (1973) Developmental biology of the sea urchin embryo. Academic, New York

    Google Scholar 

  • Gourlie BB, Infante AA (1975) Pool sizes of the deoxyribonucleoside triphosphates in the sea urchin egg and developing embryo. Biochem Biophys Res Commun 64:1206–1214

    Article  PubMed  CAS  Google Scholar 

  • Grainger JL, Winkler MM, Shen SS, Steinhardt RA (1979) Intracellular pH controls protein synthesis rate in the sea urchin egg and early embryo. Dev Biol 68:396–406

    Article  PubMed  CAS  Google Scholar 

  • Harvey EB (1956) The American Arbacia and other sea urchins. Princeton University Press, Princeton

    Google Scholar 

  • Hinegardner RT, Rao B, Feldman DE (1964) The DNA synthetic period during early development of the sea urchin egg. Exp Cell Res 36:53–61

    Article  PubMed  CAS  Google Scholar 

  • Ikegami S, Taguchi T, Ohashi M, Oguro M, Nagano H, Mano Y (1978) Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α. Nature 275:458–460

    Article  PubMed  CAS  Google Scholar 

  • Ikegami S, Taguchi T, Ohashi M, Oguro M, Nagano H, Mano Y (1979a) Selective inhibition by aphidicolin of the activity of DNA polymerase alpha leads to blockade of DNA synthesis and cell division in sea urchin embryos. Dev Growth Differ 21:119–127

    Article  CAS  Google Scholar 

  • Ikegami S, Amemiya S, Ohashi M, Oguro M, Nagano H, Mano Y (1979b) Inhibition by aphidicolin of cell cycle progression and DNA replication in sea urchin embryos. J Cell Physiol 100:439–444

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LA (1976) Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature 261:68–71

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH, Epel D (1981) Intracellular pH of sea urchin eggs measured by the dime thy loxazolidinedione (DMO) method. J Cell Biol 89:284–291

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD, Epel D, Paul M (1976) Intracellular pH and activation of sea urchin eggs after fertilization. Nature 262:661–664

    Article  PubMed  CAS  Google Scholar 

  • Killian CE, Nishioka D (1983) The uptake and phosphorylation of exogenously supplied nucleosides by fertilized sea urchin eggs. J Cell Biol 97:27a

    Google Scholar 

  • Lillie RS (1909) The general biological significance of changes in the permeability of the surface layer or plasma membrane of living cells. Biol Bull 17:188–208

    Article  Google Scholar 

  • Loeb J (1913) Artificial parthenogenesis and fertilization. University of Chicago Press, Chicago

    Google Scholar 

  • Mazia D (1974) Chromosome cycles turned on in unfertilized sea urchin eggs after exposure to NH4OH. Proc Natl Acad Sei USA 71:690–693

    Article  CAS  Google Scholar 

  • Mazia D, Ruby A (1974) DNA synthesis turned on in unfertilized sea urchin eggs by treatment with NH4OH. Exp Cell Res 85:167–172

    Article  PubMed  CAS  Google Scholar 

  • Mazia D, Schatten G, Steinhardt R (1975) The turning on of activities in unfertilized sea urchin eggs; correlation with changes of the surface. Proc Natl Acad Sci USA 72:4469–4473

    Article  PubMed  CAS  Google Scholar 

  • McGwin NF, Morton RW, Nishioka D (1983) Increased uptake of thymidine in the activation of sea urchin eggs: II. Cooperativity with phosphorylation, involvement of the cortex and partial localization of the kinases. Exp Cell Res 145:115–126

    Article  PubMed  CAS  Google Scholar 

  • Mitchison JM, Cummins J (1966) The uptake of valine and cytidine by sea urchin embryos and its relation to the cell surface. J Cell Sci 1:35–47

    PubMed  CAS  Google Scholar 

  • Morton RW, Nishioka D (1983) Effects of cytochalasin B on the cortex of the unfertilized sea urchin egg. Cell Biol Int Rep 7:835–842

    Article  PubMed  CAS  Google Scholar 

  • Nishioka D (1982) The ionic basis of fertilization. J Wash Acad Sci 72:1–11

    CAS  Google Scholar 

  • Nishioka D, Cross N (1978) The role of external sodium in sea urchin fertilization. In: Dirksen ER, Prescott D, Fox CF (eds) Cell reproduction: in honor of Daniel Mazia. Academic, New York, pp 403–413

    Google Scholar 

  • Nishioka D, Magagna LS (1981) Increased uptake of thymidine in the activation of sea urchin eggs: Specificity of uptake and dependence on internal pH, the cortical reaction, and external sodium. Exp Cell Res 133:363–372

    Article  PubMed  CAS  Google Scholar 

  • Nishioka D, Mazia D (1977) The phosphorylation of thymidine and the synthesis of histones in ammonia-treated eggs and egg fragments of the sea urchin. Cell Biol Int Rep 1:23–30

    Article  PubMed  CAS  Google Scholar 

  • Nishioka D, McGwin NF (1980) Relationships between the release of acid, the cortical reaction, and the increase of protein synthesis in sea urchin eggs. J Exp Zool 212:215–223

    Article  CAS  Google Scholar 

  • Nishioka D, Balczon R, Schatten G (1984a) Relationships between DNA synthesis and mitotic events in fertilized sea urchin eggs: Aphidicolin inhibits DNA synthesis, nuclear breakdown and proliferation of microtubule organizing centers but not cycles of microtubule assembly. Cell Biol Int Rep 8:337–346

    Article  PubMed  CAS  Google Scholar 

  • Nishioka D, Killian CE, Chacon CT, Sgagias MK (1984b) Increased uptake of thymidine in the activation of sea urchin eggs. III. Effects of aphidicolin. J Cell Physiol 118:27–33

    Article  PubMed  CAS  Google Scholar 

  • Nonaka M, Terayama H (1977) Compartmentation of thymidine kinase in unfertilized sea urchin eggs and possible release of thymidine kinase from particulates in activated eggs. Dev Biol 56:68–75

    Article  PubMed  CAS  Google Scholar 

  • Nuccitelli R, Grey RD (1984) Controversy over the fast, partial, temporary block to polyspermy in sea urchins: A reevaluation. Dev Biol 103:1–17

    Article  PubMed  CAS  Google Scholar 

  • Ord MG, Stocken LA (1973) Thymidine uptake by Paracentrotus eggs during the first cell cycle after fertilization. Exp Cell Res 83:411–414

    Article  Google Scholar 

  • Piatigorsky J, Whiteley A (1965) A change in permeability and uptake of 14C-uridine in response to fertilization in Strongylocentrotus purpuratus eggs. Biochim Biophys Acta 108:414–418

    Google Scholar 

  • Poccia D, Greenough T, Green GR, Nash E, Erickson J, Gibbs M (1984) Remodelling of sperm chromatin following fertilization: Nucleosome repeat length and histone variant transitions in the absence of DNA synthesis. Dev Biol 104:274–286

    Article  PubMed  CAS  Google Scholar 

  • Runnstrom J (1966) The vitelline membrane and cortical particles in sea urchin eggs and their function in maturation and fertilization. Adv Morphog 5:221–325

    PubMed  CAS  Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50: 637–718

    PubMed  CAS  Google Scholar 

  • Shen SS, Steinhardt RA (1978) Direct measurement of intracellular pH during metabolic derepression at fertilization and ammonia activation of the sea urchin egg: Nature 272:253–254

    Article  PubMed  CAS  Google Scholar 

  • Stearns LW (1974) Sea urchin development: Cellular and molecular aspects. Dowden, Hutchison, and Ross, Stroudsburg

    Google Scholar 

  • Steinhardt RA, Lundin L, Mazia D (1971) Bioelectric responses of the echinoderm egg to fertilization. Proc Natl Acad Sci USA 68:2426–2430

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt R, Zucker R, Schatten G (1977) Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol 58:185–196

    Article  PubMed  CAS  Google Scholar 

  • von Ledebur-Villiger M (1972) Cytology and nucleic acid synthesis of parthenogenetically activated sea urchin eggs. Exp Cell Res 72:285–308

    Article  Google Scholar 

  • von Ledebur-Villiger M (1975) Thymidine uptake by developing sea urchin embryos. Exp Cell Res 96:344–350

    Article  PubMed  CAS  Google Scholar 

  • Whitaker MJ, Steinhardt RA (1982) Ionic regulation of egg activation. Q Rev Biophys 15:593–666

    Article  PubMed  CAS  Google Scholar 

  • Winkler MM, Grainger JL (1978) Mechanism of action of NH4Cl and other weak bases in the activation of sea urchin eggs. Nature 272:253–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nishioka, D., Killian, C.E., McGwin-Scully, N.F. (1985). Increased Uptake of Nucleosides in the Activation of Sea Urchin Eggs. In: Gilles, R., Gilles-Baillien, M. (eds) Transport Processes, Iono- and Osmoregulation. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70613-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70613-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70615-8

  • Online ISBN: 978-3-642-70613-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics