Effect of Poly(ADP-Ribosyl)ation on Native Polynucleosomes, H1-Depleted Polynucleosomes, Core Particles, and H1-DNA Complexes

  • Ann Huletsky
  • Gilbert De Murcia
  • Alice Mazen
  • Peter Lewis
  • Dae G. Chung
  • Daniel Lamarre
  • Remi J. Aubin
  • Guy G. Poirier
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


There is now evidence that poly(ADP-ribosyl)ation of nuclear proteins might be involved in DNA repair [1], DNA replication [2, 3] and cellular differentiation [4, 5]. A common function of nuclear protein poly(ADP-ribosyl)ation in these various events might be the alteration of chromatin structure [6, 7].


Chromatin Structure Core Particle Core Histone Micrococcal Nuclease Histone Octamer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


TCA (Cl3 AcOH)

Trichloroacetic acid


Polyacrylamide gel electrophoresis


Polymer of ADP-ribose


Adenosine (5′) diphospho (5)-β-D-ribose




Triethanolamine chloride


Inorganic pyrophosphate


Dimethyl sulfate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger NA, Sikorski GW (1981) Poly (adenosine diphosphoribose) synthesis in ultra-violet irradiated Xeroderma Pigmentosum cells reconstituted with micrococcus luteus UV endonuclease. Biochemistry 20:3610–3614PubMedCrossRefGoogle Scholar
  2. 2.
    Kidwell WR, Mage MG (1976) Changes in poly (adenosine diphosphate ribose) polymerase in Synchronous HeLa cells. Biochemistry 15:1213–1217PubMedCrossRefGoogle Scholar
  3. 3.
    Mandel P, Okazaki H, Niedergang C (1982) Poly (adenosine diphosphate ribose). Prog Nucleic Acid Res Mol Biol 27:1–51PubMedCrossRefGoogle Scholar
  4. 4.
    Caplan AI, Rosenberg MJ (1975) Interrelationship between poly(ADP-ribose) synthesis, intracellular NAD levels and muscle or cartilage differentiation from mesodermal cells of embryonic chick limb. Proc Natl Acad Sci USA 72:1852–1857PubMedCrossRefGoogle Scholar
  5. 5.
    Althaus FR, Lawrence SD, Hey Z, Sattler G, Tsukada Y, Pitot HC (1982) Effects of altered (ADP-ribose)n metabolism on expression of fetal functions by adult hepatocytes. Nature (London) 300:366–368CrossRefGoogle Scholar
  6. 6.
    Poirier GG, de Murcia G, Jongstra-Bilen J, Niedergang C, Mandel P (1982) Poly (ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc Natl Acad Sci USA 79:3423–3427PubMedCrossRefGoogle Scholar
  7. 7.
    Aubin RJ, Fréchette A, de Murcia G, Mandel P, Lord A, Grondin G, Poirier GG (1983) Correlation between endogenous nucleosomal hyper (ADP-ribosyl)ation of histone H1 and the induction of chromatin relaxation. EMBO J 2:1685–1693PubMedGoogle Scholar
  8. 8.
    Aubin RJ, Dam VT, Miclette J, Brousseau Y, Poirier GG (1982) Chromosomal protein poly (ADP-ribosyl)ation in pancreatic nucleosomes. Can J Biochem 60:295–305PubMedCrossRefGoogle Scholar
  9. 9.
    Aubin RJ, Dam VT, Miclette J, Brousseau Y, Huletsky A, Poirier GG (1982) Hyper (ADP-ribosyl)ation of histone H1. Can J Biochem 60:1085–1094PubMedCrossRefGoogle Scholar
  10. 10.
    Huletsky A, Niedergang C, Fréchette A, Aubin R, Gaudreau A, Poirier GG (1985) Sequential (ADP-ribosyl)ation pattern of nucleosomal histones. Eur J Biochem 146:277–285PubMedCrossRefGoogle Scholar
  11. 11.
    Thoma F, Koller TH, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructure of chromatin. J Cell Biol 83: 403–427PubMedCrossRefGoogle Scholar
  12. 12.
    Benjamin RC, Gill DM (1980) ADP-ribosylation in mammalian cell ghosts: dependence of poly (ADP-ribose) synthesis on strand breakage in DNA. J Biol Chem 255:10493–10501PubMedGoogle Scholar
  13. 13.
    Benjamin RC, Gill DM (1980) Poly (ADP-ribose) synthesis in vitro programmed by damaged DNA: a comparison of DNA molecules containing different types of strand breaks. J Biol Chem 255:10502–10508PubMedGoogle Scholar
  14. 14.
    Ferro AM, Olivera BM (1982) Poly (ADP-ribosyl)ation in vitro: Reaction parameters and enzyme mechanism. J Biol Chem 257:7808–7813PubMedGoogle Scholar
  15. 15.
    Zahradka P, Ebisuzaki K (1982) A shuttle mechanism for DNA-protein interactions. The regulation of poly (ADP-ribose) polymerase. Eur J Biochem 127:579–585PubMedCrossRefGoogle Scholar
  16. 16.
    Niedergang C, Ittel ME, de Murcia G, Pouyet J, Mandel P (1985) Kinetics of nucleosomal histone H1 hyper (ADP-ribosyl)ation and polynucleosomes relaxation. This volumeGoogle Scholar
  17. 17.
    Panyim S, Chalkley R (1969) High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys 130:337–346PubMedCrossRefGoogle Scholar
  18. 18.
    Adamietz P, Rudolph A (1984) ADP-ribosylation of nuclear proteins in vivo. Identification of histone H2B as a major acceptor for mono and poly (ADP-ribose) in dimethyl sulfate treated hepatoma AH 7974 cells. J Biol Chem 259:6841–6846PubMedGoogle Scholar
  19. 19.
    Ueda K, Ohashi Y, Hatakeyama K, Hayaishi O (1983) Inhibition of DNA ligase activity by histones and its reversal by poly (ADP-ribose). In: Miwa M et al. (eds) ADP-ribosylation, DNA repair and cancer. J Sci Soc Press, Tokyo/VNU Science Press, Utrecht, pp 175–182Google Scholar
  20. 20.
    Zolan ME, Smith CA, Calvin NM, Hanawalt PC (1982) Rearrangement of mammalian chromatin structure following excision repair. Nature (London) 299:462–464CrossRefGoogle Scholar
  21. 21.
    Hsiang MW, Cole DR (1977) Structure of histone H1-DNA complex: Effect of histone H1 on DNA condensation. Proc Natl Acad Sci USA 74:4852–4856PubMedCrossRefGoogle Scholar
  22. 22.
    von Mickwitz CU, Grade K, Lindigkeit R (1982) Ultrastructure and solubility of the nonhistone proteins HMG 14 and HMG 17 in complexes with DNA and histone H1/DNA. Stud Biophys 92:111–118Google Scholar
  23. 23.
    Erard M, de Murcia G, Mazen A, Pouyet J, Champagne M, Daune M (1979) Ethidium bromide binding to core particles: comparison with native chromatin. Nucleic Acid Res 6:3232–3253CrossRefGoogle Scholar
  24. 24.
    Lutter LC (1978) Kinetics analysis of DNase I cleavages in the nucleosome cores, evidence for a DNA superhelix. J Mol Biol 124:391–420PubMedCrossRefGoogle Scholar
  25. 25.
    Kunzler P, Stein A (1983) Histone H5 can increase the internucleosome spacing in dinucleosomes to native like values. Biochemistry 22:1783–1789PubMedCrossRefGoogle Scholar
  26. 26.
    Miwa M, Tanaka M, Matsushima T, Sugimura T (1974) Purification and properties of a glycohydrolase from calf thymus splitting ribose-ribose linkages of poly (adenosine diphosphate ribose). J Biol Chem 249:3475–3482PubMedGoogle Scholar
  27. 27.
    Jongstra-Bilen J, Ittel ME, Niedergang C, Vosberg HP, Mandel P (1983) DNA topoisomerase I from calf thymus is inhibited in vitro by poly (ADP-ribosyl)ation. Eur J Biochem 136:391–396PubMedCrossRefGoogle Scholar
  28. 28.
    de Murcia G, Jongstra-Bilen J, Ittel ME, Mandel P, Delain E (1983) Poly (ADP-ribose) polymerase automodification with DNA: Electron microscopic visualization. EMBO J 2:543–548PubMedGoogle Scholar
  29. 29.
    Kreimeyer A, Wielckens K, Adamietz P, Hilz H (1984) DNA repair associated ADP-ribosylation in vivo. J Biol Chem 259:890–896PubMedGoogle Scholar
  30. 30.
    de Murcia G, Huletsky A, Lamarre D, Gaudreau A, Pouyet J, Poirier GG (1985) Poly (ADP-ribose) glycohydrolase activity causes recondensation of relaxed poly (ADP-ribosyl)ated polynucleosomes. This volumeGoogle Scholar
  31. 31.
    Gaudreau A, Ménard L, de Murcia G, Poirier GG (submitted) Differential turnover of poly (ADP-ribosyl)ated proteins on polynucleosomes by poly (ADP-ribose) glycohydrolaseGoogle Scholar
  32. 32.
    Ogata N, Ueda K, Hayaishi O (1980) ADP-ribosylation of histone H2B: Identification of glutamic acid residue 2 as the modification site. J Biol Chem 255:7610–7615PubMedGoogle Scholar
  33. 33.
    Burzio LO, Riquelme PT, Koide SS (1979) ADP-ribosylation of rat liver nucleosome core histones. J Biol Chem 254:3029–3037PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ann Huletsky
    • 1
  • Gilbert De Murcia
    • 2
  • Alice Mazen
    • 2
  • Peter Lewis
    • 3
  • Dae G. Chung
    • 3
  • Daniel Lamarre
    • 1
  • Remi J. Aubin
    • 4
  • Guy G. Poirier
    • 1
  1. 1.Chromatin Research Unit, Centre de Recherche sur les Mécanismes de Sécrétion, Département de Biologie, Faculté des SciencesUniversité de SherbrookeSherbrookeCanada
  2. 2.Laboratoire de BiophysiqueInstitut de Biologie Moléculaire et CellulaireStrasbourg CédexFrance
  3. 3.Department of Biochemistry, Medical Science BuildingUniversity of TorontoTorontoCanada
  4. 4.Health Sciences Division, Chalk River Nuclear LaboratoriesAtomic Energy of Canada LimitedChalk RiverCanada

Personalised recommendations