Skip to main content

Glutamyl Ribose-5-Phosphate Storage Disease: Clinical Description and Characterization of the Stored Material

  • Chapter
ADP-Ribosylation of Proteins

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Posttranslational processing of proteins involves conformational changes, formation and cleavage of peptide bonds, and chemical modification of amino acid residues. These events are assumed to have evolved for specific purposes, such as protection from degradation, binding to specific macromolecules, and regulation of physiological processes. Posttranslational covalent modification of amino acid moieties in proteins is a diverse process resulting in more than 130 derivatives of the 20 primary amino acids [1]. The formation of glycoproteins by the enzymatic addition of carbohydrate to amino acids and the subsequent elongation to form oligosaccharide chains has become a major area of investigation in recent years. In glycoconjugate synthesis, ADP-ribosylation is unique in that it involves an initial linkage of ADP-ribose via the ribosyl moiety and, in the case of poly(ADP-ribosylation), subsequent elongation with additional ADP-ribose units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wold F (1980) Post-translational covalent modification of proteins. In: Smulson ME, Sugimura T (eds) Novel ADP-ribosylations of regulatory enzymes and proteins. Elsevier/North Holland, Amsterdam New York, pp 325–332

    Google Scholar 

  2. Zinn AB, Plantner JJ, Carlson DM (1977) Nature of linkages between protein core and oligosaccharides. In: Horowitz MI, Pigman W (eds) The glycoconjugates, vol I. Academic Press, London New York, pp 69–85

    Google Scholar 

  3. Burzio LO (1982) ADP-ribosyl protein linkages. In: Hayaishi O, Ueda K (eds) ADP-ribosylation reactions. Biology and medicine. Academic Press, London New York, pp 103–116

    Google Scholar 

  4. Goff CG (1974) Chemical structures of a modification of the Escherichia coli ribonucleic acid polymerase α polypeptides induced by bacteriophage T4 infection. J Biol Chem 249:6181 – 6190

    PubMed  CAS  Google Scholar 

  5. Vaughn M, Moss J (1981) Mono(ADP-ribosyl)transferases and their effects on cellular metabolism. Curr Top Cell Regul 20:205–246

    Google Scholar 

  6. Moss J, Vaughn M (1977) Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252:2455–2457

    PubMed  CAS  Google Scholar 

  7. Moss J, Stanley SJ, Watkins PA (1980) Isolation and properties of an NAD- and guanidine-dependent ADP-ribosyltransferase activity from turkey erythrocytes. J Biol Chem 255:5838–5840

    PubMed  CAS  Google Scholar 

  8. Pappenheimer AM (1977) Diphtheria toxin. Annu Rev Biochem 46:69–94

    Article  PubMed  CAS  Google Scholar 

  9. Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72:2284–2288

    Article  PubMed  CAS  Google Scholar 

  10. Van Ness BG, Howard JB, Bodley JW (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J Biol Chem 255:10710–10716

    PubMed  Google Scholar 

  11. Van Ness BG, Howard JB, Bodley JW (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J Biol Chem 255:10717–10720

    PubMed  Google Scholar 

  12. Oppenheimer NJ, Bodley JW (1981) Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2. J Biol Chem 256:8579–8581

    PubMed  CAS  Google Scholar 

  13. Nishizuka Y, Ueda K, Honjo T, Hayaishi O (1968) Enzymic adenosine diphosphate ribosylation of histone and poly adenosine diphosphate ribose synthesis in rat liver nuclei. J Biol Chem 243:3765–3767

    PubMed  CAS  Google Scholar 

  14. Adamietz P, Hilz H (1975) Covalent linkage of poly(adenosine diphosphate ribose) to nuclear proteins of rat liver by two types of bonds. Biochem Soc Trans 3:1118–1120

    CAS  Google Scholar 

  15. Hilz H, Stone R (1976) Poly(ADP-ribose) and ADP-ribosylation of proteins. Rev Physiol Biochem Pharmacol 76:1–58

    Article  PubMed  CAS  Google Scholar 

  16. Adamietz P, Bredehorst R, Hilz H (1978) ADP-ribosylated histone H1 from HeLa cultures. Fundamental differences to (ADP-ribose)n — histone H1 conjugates formed in vitro. Eur J Biochem 91:317–326

    Article  PubMed  CAS  Google Scholar 

  17. Riquelme PT, Burzio LO, Koide SS (1979) ADP-ribosylation of rat liver lysine-rich histone in vitro. J Biol Chem 254:3018–3028

    PubMed  CAS  Google Scholar 

  18. Burzio LO, Riquelme PT, Koide SS (1979) ADP ribosylation of rat liver nucleosomal core histones. J Biol Chem 254:3029–3037

    PubMed  CAS  Google Scholar 

  19. Ogata N, Ueda K, Hayaishi O (1980) ADP-ribosylation of histone H2B. Identification of glutamic acid residue 2 as the modification site. J Biol Chem 255:7610–7615

    PubMed  CAS  Google Scholar 

  20. Ogata N, Ueda K, Kagamiyama H, Hayaishi O (1980) ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites. J Biol Chem 255:7616–7620

    PubMed  CAS  Google Scholar 

  21. Montreuil J (1980) Primary structure of glycoprotein glycans. Basis for the molecular biology of glycoproteins. Adv Carbohydr Chem Biochem 37:157–223

    Article  PubMed  CAS  Google Scholar 

  22. Pollitt RJ, Pretty KM (1974) The glycoasparagines in urine of a patient with aspartylglycosaminuria. J Biol Chem 254:1513–1515

    Google Scholar 

  23. Maury P (1979) Accumulation of two glycoasparagines in the liver in aspartylglycasaminuria. J Biol Chem 254:1515–1515

    Google Scholar 

  24. Williams JC, Chambers JP, Liehr JG (1984) Glutamyl ribose-5-phosphate storage disease. A hereditary defect in the degradation of poly(ADP-ribosylated) proteins. J Biol Chem 259: 1037–1042

    PubMed  CAS  Google Scholar 

  25. Williams JC, Butler IJ, Rosenberg HS, Verani R, Scott CI, Conley SB (1984) Progressive neurologic deterioration and renal failure due to storage of glutamyl ribose-5-phosphate. N Engl J Med 311:152–155

    Article  PubMed  CAS  Google Scholar 

  26. Hers HG (1965) Inborn lysosomal diseases. Gastroenterology 48:625–633

    PubMed  CAS  Google Scholar 

  27. Jonas AJ, Smith ML, Allison WS, Laikind PK, Greene AA, Schneider JA (1983) Proton-translocating ATPase and lysosomal cystine transport. J Biol Chem 258:11727–11730

    PubMed  CAS  Google Scholar 

  28. Okayama H, Honda M, Hayaishi O (1978) Novel enzyme from rat liver that cleaves and ADP-ribosyl histone linkage. Proc Natl Acad Sci USA 75:2254–2257

    Article  PubMed  CAS  Google Scholar 

  29. Oka J, Ueda K, Hayaishi O, Komura H, Nakanishi K (1984) ADP-ribosyl protein lyase. Purification, properties, and identification of the product. J Biol Chem 254:986–995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Williams, J.C. (1985). Glutamyl Ribose-5-Phosphate Storage Disease: Clinical Description and Characterization of the Stored Material. In: Althaus, F.R., Hilz, H., Shall, S. (eds) ADP-Ribosylation of Proteins. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70589-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70589-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70591-5

  • Online ISBN: 978-3-642-70589-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics