Genetic Basis of Iron Assimilation in Pathogenic Escherichia coli

  • J. B. Neilands
  • A. Bindereif
  • J. Z. Montgomery
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 118)


Progress in sanitation and medical practice have combined to eliminate certain classical bacteremic infections in the United States and throughout Europe. In these societies the common gram-negative bacilli now isolated in the clinic are those which are prominently associated with man, such as Escherichia coli, or are, like Pseudomonas aeruginosa, those which are equipped with special devices to take advantage of the compromised host (Young et al. 1982).


Ferric Citrate Outer Membrane Receptor Iron Uptake System Invasive Strain Ferric Perchlorate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archibald F (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett 19:29–32CrossRefGoogle Scholar
  2. Bindereif A (1984) Doctoral dissertation. University of California, BerkeleyGoogle Scholar
  3. Bindereif A, Neilands JB (1983) Cloning of the aerobactin mediated iron assimilation system of plasmid ColV. J Bacteriol 153:1111–1113PubMedGoogle Scholar
  4. Bindereif A, Neilands JB (1985 a) Aerobactin genes in clinical isolates of Escherichia coli. J Bacteriol 161:727–735PubMedGoogle Scholar
  5. Bindereif A, Neilands JB (1985 b) The iron assimilation system of plasmid ColV in Escherichia coli. Promoter mapping, sequencing and transcriptional regulation by iron. J Bacteriol 162:1039–1046PubMedGoogle Scholar
  6. Bindereif A, Braun V, Hantke K (1982) The cloacin receptor of ColV-bearing Escherichia coli is part of the Fe3+-aerobactin transport system. J Bacteriol 150:1472–1475PubMedGoogle Scholar
  7. Bindereif A, Thorsness PE, Neilands JB (1983) Deletion mapping of the aerobactin gene complex of plasmid ColV. Inorg Chim Acta 79:78–80CrossRefGoogle Scholar
  8. Bindereif A, Paw BH, Neilands JB (1984) Molecular genetics of the iron assimilation of plasmid ColV in Escherichia coli. II. Expression and mapping of the aerobactin biosynthesis genes. J Biol ChemGoogle Scholar
  9. Binns MM, Davies DL, Hardy KG (1979) Cloned fragments of the plasmid ColV, I-K94 specifying virulence and serum resistance. Nature 279:778–781PubMedCrossRefGoogle Scholar
  10. Braun V, Burkhardt R (1982) Regulation of the ColV plasmid-determined iron(III) aerobactin transport system inEscherichia coli. J Bacteriol 152:223–231 Bullen JJ (1983) The significance of iron in infection. Rev Infect Dis 3:1127–1138Google Scholar
  11. Davis JH, Yull AB (1964) A toxic factor in abdominal injury. II. The role of the red cell component. Trauma 4:84–89CrossRefGoogle Scholar
  12. Ernst JF, Bennett RL, Rothfield LI (1978) Constitutive expression of the iron enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J Bacteriol 135:928–934PubMedGoogle Scholar
  13. Fecker L, Braun V (1983) Cloning and expression of the fhu genes involved in iron(III) hydroxamate uptake byEscherichia coli. J Bacteriol 156:1301–1314PubMedGoogle Scholar
  14. Finkelstein RA, Sciortino CV, Mcintosh MA (1983) Role of iron in microbe-host interactions. Rev Infect Dis 5: S759–777PubMedCrossRefGoogle Scholar
  15. Fiss EH, Stanley-Samuelson P, Neilands JB (1982) Properties and proteolysis of ferric enterobactin outer membrane receptor inEscherichia coli K12. Biochemistry 21:4517–4522PubMedCrossRefGoogle Scholar
  16. Fleming TF, Nahlik MS, Mcintosh MA (1983) Regulation of enterobactin iron transport in Escherichia coli: characterization ofent:: Mu d(Apr lac) operon fusions. J Bacteriol 156:1171–1177PubMedGoogle Scholar
  17. Frédéricq P (1950) Analogies between colicins E and K and bacteriophages II and III. CR Soc Biol 144:437–439Google Scholar
  18. Garibaldi J A, Neilands JB (1956) Formation of iron-binding compounds by microorganisms. Nature 177:526–527PubMedCrossRefGoogle Scholar
  19. Gibson F, Magrath DJ (1969) The isolation and characterization of a hydroxamic acid (aerobactin) formed byAerobacter aerogenes 62–1. Biochim Biophys Acta 192:175–184PubMedGoogle Scholar
  20. Gratia A (1925) Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. CR Soc Biol (Paris) 93:1040–1044Google Scholar
  21. Grewal KK, Warner PJ, Williams PH (1982) An inducible outer membrane protein involved in aerobactin-mediated iron transport by ColV strains of Escherichia coli. FEBS Lett 140:27–30PubMedCrossRefGoogle Scholar
  22. Griffiths E (1983) Bacterial adaptation to a low iron environment. In: Schlessinger D (ed) Microbiology 1983. Am Soc Microbiol, Washington DC, pp 329–333Google Scholar
  23. Guterman S, Dann L (1973) Excretion of enterochelin by exbA and exbB mutants of Escherichia coli. J Bacteriol 114:1225–1230PubMedGoogle Scholar
  24. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14PubMedGoogle Scholar
  25. Hantke K (1982) Negative control of iron uptake systems in Escherichia coli. FEMS Microbiol Lett 15:83–86CrossRefGoogle Scholar
  26. Hantke K (1983) Identification of an iron uptake system specific for coprogen and rhodotorulic acid inEscherichia coli K12. Mol Gen Genet 191:301–306PubMedCrossRefGoogle Scholar
  27. Hussein S, Hantke K, Braun V (1981) Citrate-dependent iron transport system of Escherichia coli K12. Eur J Biochem 117:431–437PubMedCrossRefGoogle Scholar
  28. Hutton JJ, Goebel WF (1961) Colicin V. Proc Natl Acad Sci USA 47:1498–1500PubMedCrossRefGoogle Scholar
  29. Kadner RJ, Heller K, Coulton JW, Braun V (1980) Genetic control of hydroxamate mediated iron uptake in Escherichia coli. J Bacteriol 143:256–264PubMedGoogle Scholar
  30. Klebba PE, Mcintosh MA, Neilands JB (1982) Kinetics of biosynthesis of iron-regulated membrane proteins in Escherichia coli. J Bacteriol 149:880–888PubMedGoogle Scholar
  31. Konopka K, Neilands JB (1984) Effect of serum albumin on siderophore-mediated utilization of transferrin iron. Biochemistry 23:2122–2127PubMedCrossRefGoogle Scholar
  32. Konopka K, Bindereif A, Neilands JB (1982) Aerobactin-mediated utilization of transferrin iron. Biochemistry 21:6503–6508PubMedCrossRefGoogle Scholar
  33. Krone WJA, Oudega B, Stegehuis F, de Graaf FK (1983 a) Cloning and expression of the cloacin DF13/aerobactin receptor of Escherichia coli (ColV-K30). J Bacteriol 153:716–721PubMedGoogle Scholar
  34. Krone WJA, Luirink J, Koningstein G, Oudega B, de Graaf FK (1983 b) Subcloning of the cloacin DF13/aerobactin receptor protein and identification of a pColV-K30 determined polypeptide involved in ferric aerobactin uptake. J Bacteriol 156:945–948PubMedGoogle Scholar
  35. Laird AJ, Young IG (1980) Tn5 mutagenesis of the enterochelin gene cluster of Escherichia coli. Gene 11:359–366PubMedCrossRefGoogle Scholar
  36. Laird AJ, Ribbons DW, Woodrow GC, Young IG (1980) Bacteriophage Mu-mediated gene transposition and in vivo cloning of the enterochelin gene cluster of Escherichia coli. Gene 11:347–357PubMedCrossRefGoogle Scholar
  37. Lammers M, Follmann H (1983) The ribotide reductases: a unique group of metallo-enzymes essential for cell proliferation. Structure and Bonding 54:27–91CrossRefGoogle Scholar
  38. Luckey M, Pollack JR, Wayne R, Ames BN, Neilands JB (1972) Iron uptake in Salmonella typhimur-ium: utilization of exogenous siderochromes as iron carriers. J Bacteriol 111: 731–738PubMedGoogle Scholar
  39. Lundrigan MD, Earhart CF (1981) Additional outer membrane proteins affected by the per A mutation. In: Abstract of the 81st annual meeting. Am Soc Microbiol, Washington DC, p 164Google Scholar
  40. Miles AA, Khimji PL (1975) Enterobacterial chelators of iron: their occurrence, detection, and relation to pathogenicity. J Med Microbiol 8:477–490PubMedCrossRefGoogle Scholar
  41. McDougall S, Neilands JB (1984) Plasmid- and chromosome-coded aerobactin synthesis in enteric bacteria: insertion sequences flank operon in plasmid-mediated systems. J Bacteriol 159:300–305PubMedGoogle Scholar
  42. Montgomerie JZ, Kalmanson GM, Guze LB (1979) Enterobactin and virulence ofEscherichia coli in pyelonephritis. J Infect Dis 140:1013PubMedCrossRefGoogle Scholar
  43. Montgomerie JZ, Bindereif A, Neilands JB, Kalmanson GM, Guze LB (1984) Association of hydroxamate siderophore (aerobactin) with Escherichia coli isolated from patients with bacteremia. Infect Immun 46:835–838PubMedGoogle Scholar
  44. Neilands JB (1957) Some aspects of microbial iron metabolism. Bacteriol Rev 21:101–111PubMedGoogle Scholar
  45. Neilands JB (1972) Evolution of biological iron binding centers. Structure and Bonding 11:145–170CrossRefGoogle Scholar
  46. Neilands JB (1979) The ironic function of bacteriophage receptors. Trends in Biochem Res 4:115- 118CrossRefGoogle Scholar
  47. Neilands JB (1984) Siderophores of bacteria and fungi. Microbiol Sci 1:9–14PubMedGoogle Scholar
  48. Nilius AM, Savage DC (1984) Serum resistance encoded by colicin V plasmids in Escherichia coli and its relationship to the plasmid transfer system. Infect Immun 43:947–953PubMedGoogle Scholar
  49. O’Brien IG, Gibson F (1970) The structure of enterochelin and related 2,3-dihydroxybenzoylserine conjugates from Escherichia coli. Biochim Biophys Acta 215:393–402PubMedGoogle Scholar
  50. Payne SM (1980) Synthesis and utilization of siderophores by Shigella flexneri. J Bacteriol 143:1420–1424PubMedGoogle Scholar
  51. Perry RD, San Clemente CL (1979) Siderophore synthesis in Klebsiella pneumoniae and Shigella sonnei during iron deficiency. J Bacteriol 140:1129–1132PubMedGoogle Scholar
  52. Pollack JR, Neilands JB (1970) Enterobactin, an iron transport compound from Salmonella typhimur-ium. Biochem Biophys Res Commun 38:989–992PubMedCrossRefGoogle Scholar
  53. Pollack JR, Ames BN, Neilands JB (1970) Iron transport in Salmonella typhimurium. J Bacteriol 104:635–639PubMedGoogle Scholar
  54. Postle K, Good RF (1983) DNA sequence of the Escherichia coli tonB gene. Proc Natl Acad Sci USA 80:5235–5239PubMedCrossRefGoogle Scholar
  55. Prody CA, Neilands JB (1984) Genetic and biochemical characterization of the Escherichia coli K12 fhuB mutation. J Bacteriol 157:874–880PubMedGoogle Scholar
  56. Quackenbush RL, Falkow S (1979) Relationship between colicin V activity and virulence in Escherichia coli. Infect Immun 24:562–564PubMedGoogle Scholar
  57. Reeves MW, Pine L, Neilands JB, Balows A (1983) Absence of siderophore activity in Legionella species grown in iron-deficient media. J Bacteriol 154:324–329PubMedGoogle Scholar
  58. Régnier P (1981) Identification of protease IV of Escherichia coli, an outer membrane bound enzyme. Biochim Biophys Res Commun 99:844–854CrossRefGoogle Scholar
  59. Sansonetti PJ, Hale TL, Dammin GJ, Kapfer C, Collins HH, Formal SB (1983) Alterations in the pathogenicity of Escherichia coli K12 after transfer of plasmid and chromosomal genes from Shigella flexneri. Infect Immun 39:1392–1402PubMedGoogle Scholar
  60. Schade AL, Caroline L (1944) Raw egg white and the role of iron in growth inhibition of Shigella dysenteriae, Staphylococcus aureus, Escherichia coli, and Saccharomyces cerevisiae. Science 100:14–15PubMedCrossRefGoogle Scholar
  61. Schade AL, Caroline L (1946) An iron binding component in human blood plasma. Science 104:340–341CrossRefGoogle Scholar
  62. Simonson C, Brenner D, DeVoe IW (1982) Expression of a high affinity mechanism for acquisition of transferrin iron by Neisseria meningitidis. Infect Immun 36:107–113PubMedGoogle Scholar
  63. Smith HW (1974) A search for a transmissible pathogenic character in invasive strains of Escherichia coli: the discovery of a plasmid-controlled toxin and a plasmid-controlled lethal character closely associated, or identical with colicin V. J Gen Microbiol 83:95–111PubMedGoogle Scholar
  64. Smith HW, Huggins MB (1976) Further observations on the association of the colicin V plasmid of Escherichia coli with pathogenicity and with survival in the alimentary tract. J Gen Microbiol 92:335–350PubMedGoogle Scholar
  65. Stuart SJ, Greenwood KT, Luke RKJ (1980) Hydroxamate-mediated transport of iron controlled by ColV plasmids. J Bacteriol 143:35–42PubMedGoogle Scholar
  66. Stuart SJ, Greenwood KT, Luke RK (1982) Iron-suppressible production of hydroxamate by Escherichia coli isolates. Infect Immun 36:870–875PubMedGoogle Scholar
  67. van Tiel-Menkveld GJ, Oudega B, Kempers O, deGraaf FK (1981) The possible involvement of the cloacin DF14 receptor protein in the hydroxamate mediated uptake of iron by Enterobacter cloacae and Escherichia coli. FEMS Microbiol Lettr 12:373–380CrossRefGoogle Scholar
  68. van Tiel-Menkveld GJ, Mentjox-Vervuurt JM, Oudega B, de Graaf FK (1982) Siderophore production by Enterobacter cloacae and a common receptor protein for the uptake of aerobactin and cloacin DF13. J Bacteriol 150:490–497PubMedGoogle Scholar
  69. Warner PJ, Williams PH, Bindereif A, Neilands JB (1981) ColV plasmid specified aerobactin synthesis by invasive strains of Escherichia coli. Infect Immun 33:540–545PubMedGoogle Scholar
  70. Wayne R, Neilands JB (1975) Evidence for common binding sites for ferrichrome compounds and bacteriophage ϕ80 in the cell envelope of Escherichia coli. J Bacteriol 121:497–501PubMedGoogle Scholar
  71. Weinberg ED (1978) Iron and infection. Microbiol Rev 42:45–66PubMedGoogle Scholar
  72. Weinberg ED (1984) Iron withholding: a defense against infection and neoplasia. Physiol Rev 64:65–102PubMedGoogle Scholar
  73. Williams PH (1979) Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli. Infect Immun 26:925–932PubMedGoogle Scholar
  74. Williams PH, Warner PJ (1980) ColV plasmid-mediated colicin V-independent iron uptake system of invasive strains of Escherichia coli. Infect Immun 29:411–416PubMedGoogle Scholar
  75. Yancey RJ, Breeding SAL, Lankford CE (1979) Enterochelin (enterobactin): virulence factor for Salmonella typhimurium. Infect Immun 24:174–180PubMedGoogle Scholar
  76. Young LS, Stevens P, Kaijser B (1982) Gram-negative pathogens in septicemic infections. Scand J Infect Dis [Suppl] 31:78–94Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. B. Neilands
    • 1
  • A. Bindereif
    • 1
  • J. Z. Montgomery
    • 2
  1. 1.Department of BiochemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of MedicineRancho Los Amigos HospitalDowneyUSA

Personalised recommendations