Advertisement

Technological Processes for Biotechnological Utilization of Microorganisms

  • B. Mattiasson
Conference paper
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 35)

Abstract

When developing new processes for production of various biochemicals the creation of the organism, often by gene technology, is a very important step which must be accompanied by development of cultivation as well as downstream steps. There is a lot to gain by treating the whole process, from creation of the organism to isolation of the product, as one process that has to be optimized in the overall mode.

The present paper deals with recent developments in process technology for utilizing microorganisms and with some efforts to integrate bioconversion and upgrading.

Keywords

Gene Technology Ergot Alkaloid Biotechnological Process Process Intensification Extractive Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Brodelius, P. 1983. Immobilized plant cells. In Immobilized Cells and Organelles, ed. B. Mattiasson, pp. 27–56. Boca Raton, FL: CRC-Press.Google Scholar
  2. (2).
    Brodelius, P.; Deus, B.; Mosbach, K.; and Zenk, M.H. 1979. Immobilized plant cells for the production and transformation of natural products. FEBS Lett. 103: 93–97.PubMedCrossRefGoogle Scholar
  3. (3).
    Blake-Coleman, B.C.; Calder, M.R.; Carr, R.J.G.; Moody, S.C.; and Clarke, D.J. 1984. Direct monitoring of reactor biomass in fermentation control. Trends Anal. Chem. 9: 229–235.CrossRefGoogle Scholar
  4. (4).
    Cysewski, G.R., and Wilke, C.R. 1977. Rapid ethanol fermentation using vacuum and cell recycle. Biotechnol. Bioeng. 24: 1125–1143.CrossRefGoogle Scholar
  5. (5).
    de Figueroa, L.I.; de Richard, M.F.; and de van Broock, M.R. 1984. Transfer of the flocculation property to the baker’s yeast Saccharo-myces cerevisiae by conventional genetic manipulation. Biotechnol. Lett. 6(3): 171–176.CrossRefGoogle Scholar
  6. (6).
    Evans, P.J., and Wang, H.Y. 1984. Pigment production from immobilized Monascus sp. utilizing polymeric resin adsorption. Appl. Envir. Microbiol. 47: 1323–1326.Google Scholar
  7. (7).
    Hahn-Hägerdal, B.; Larsson, M.; and Mattiasson, B. 1982. Shift in metabolism towards ethanol production in Saccharomyces cerevisiae using alterations of the physical-chemical environment. Biotechnol. Bioeng. Symp. 12: 199–202.Google Scholar
  8. (8).
    Harris, M.C., and Kell, B.K. 1985. The estimation of microbial biomass. Biosensors 1: 17–84.PubMedCrossRefGoogle Scholar
  9. (9).
    Hopkinson, J. 1983. Hollow fiber cell culture: applications in industry. In Immobilized Cells and Organelles, ed. B. Mattiasson, pp. 89–99. Boca Raton, FL: CRC-Press.Google Scholar
  10. (10).
    Inloes, D.S.; Taylor, D.P.; Cohen, S.N.; Michaels, A.S.; and Robertsson, C.R. 1983. Ethanol production by Saccharomyces cerevisia immobilized in hollow fiber bioreactors. Appl. Envir. Microbiol. 46: 264–278.Google Scholar
  11. (11).
    Keffort, B.; Kjelleberg, S.; and Marshall, K.C. 1982. Bacterial scavenging: utilization of fatty acids localized at a solid-liquid interface. Arch. Microbiol. 133: 250–260.Google Scholar
  12. (12).
    Kopp, B.; El-Sayed, A.-H.; Mahmoud, W.; and Rehm, H.J. 1984. Production of ergot alkaloids, penicillins and chlortetramyeline by immobilized microorganisms. Preprint, 3rd European Congress on Biotechnology, September 1984, pp. 281–286. Munich, Weinheim: Verlag Chemie.Google Scholar
  13. (13).
    Kopp, B., and Rehm, H.J. 1983. Alkaloid production by immobilized mycelia of Claviceps purpurea. Eur. J. Appl. Microbiol. Biotechnol. 18: 257–263.CrossRefGoogle Scholar
  14. (14).
    Larsson, M.; Holst, O.; and Mattiasson, B. 1984. Butanol fermentation using a selective adsorbent for product recovery. Preprint, 3rd European Congress on Biotechnology, September 1984, pp. 313–316. Munich, Weinheim: Verlag Chemie.Google Scholar
  15. (15).
    Lee, S.S., and Wang, H.Y. 1982. Repeated fed-batch rapid fermentations using yeast cells and activated carbon extraction system. Biotechnol. Bioeng. Symp. 12: 221–231.Google Scholar
  16. (16).
    Maiorella, B.; Blanch, H.W.; and Wilke, C.R. 1983. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 25: 103–121.PubMedCrossRefGoogle Scholar
  17. (17).
    Mandenius, C.-F.; Danielsson, B.; and Mattiasson, B. 1984. Evaluation of a dialysis probe for continuous sampling in fermentor and in complex media. Anal. Chim. Acta 163: 135–141.CrossRefGoogle Scholar
  18. (18).
    Matsumura, M., and Märkl, H. 1984. Elimination of ethanol inhibition by pertraction. Preprint, 3rd European Congress on Biotechnology, September 1984, Vol. II, pp. 415–423. Munich, Weinheim: Verlag Chemie.Google Scholar
  19. (19).
    Mattiasson, B. 1983. Application of aqueous two phase systems in biotechnology. Trends Biotechnol. 1(1): 16–20.CrossRefGoogle Scholar
  20. (20).
    Mattiasson, B., ed. 1983. Immobilized Cells and Organelles, vols. I and II. Boca Raton, FL: CRC-Press.Google Scholar
  21. (21).
    Mattiasson, B. 1984. Immunochemical assays for process control: potentials and limitations. Trends Anal. Chem 3: 245–250.CrossRefGoogle Scholar
  22. (22).
    Mattiasson, B., and Hahn-Hägerdal, B. 1982. Microenvironmental effects on metabolic behaviour of immobilized cells. A hypothesis. Eur. J. Appl. Microbiol. Biotechnol. 16: 52–55.CrossRefGoogle Scholar
  23. (23).
    Mattiasson, B., and Larsson, M. 1985. Extractive bioconversions with emphasis on solvent production. In Biotechnology and Genetic Engineering Reviews, ed. G.G. Russel, vol. 3. Newcastle-upon-Tyne, England: Intercept Ltd, in press.Google Scholar
  24. (24).
    Mattiasson, B.; Ramstorp, M.; Nilsson, I.; and Hahn-Hägerdal, B. 1981. Comparison of the performance of hollow-fiber microbe reactor with a reactor containing alginate entrapped cells. Denitrification of water using Pseudomonas denitrificans. Biotechnol. Lett. 3: 561–566.CrossRefGoogle Scholar
  25. (25).
    Mattiasson, B.: Suominen, M.; Andersson, E.; Häggström, L.; Albertsson, P.-A.; and Hahn-Hägerdal, B. 1982. Solvent production by Clostridium acetobutylium in aqueous two-phase systems. In Enzyme Engineering 6, eds. J. Chibata, S. Fukui, and L.B. Wingard, Jr., pp. 153–155. New York: Plenum Press.Google Scholar
  26. (26).
    Navarro, J.M., and Durand, G. 1977. Modification of yeast metabolism by immobilization into porous glass. Eur. J. Appl. Microbiol. Biotechnol. 4: 243–254.Google Scholar
  27. (27).
    Nilsson, I. 1984. Influence of entrapment and surface adsorption on the conversion capacity of Pseudomonas spp. Ph.D. Thesis, University of Lund.Google Scholar
  28. (28).
    Potts, M.; Bowman, M.A.; and Morrison, N.S. 1984. Control of matric water potential (Ψm) in immobilized cultures of cyanobacteria. FEMS Microbiol. Lett. 24: 193–196.Google Scholar
  29. (29).
    Shinmyo, A.; Kimura, H.; and Okada, H. 1982. Physiology of $amylase production by immobilized Bacillus amyloliquifacieus. Eur. J. Appl. Microbiol. Biotechnol. 14: 7–12.CrossRefGoogle Scholar
  30. (30).
    Tangan, S.K., and Ghose, T.K. 1981. Environmental manipulations in salicylic acid fermentation. Proc. Biochem. 16: 24–27.Google Scholar
  31. (31).
    Tone, H.; Kitai, A.; and Ozaki, A. 1968. A new method for removal of inhibitory fermentation products. Biotechnol. Bioeng. 10: 689–692.CrossRefGoogle Scholar
  32. (32).
    Uhlén, M.; Nilsson, B.; Guss, B.; Lindberg, M.; Gatenbeck, S.; and Philipson, L. 1983. Gene fusion vectors based on the gene for straphylococcal protein A. Gene 23: 369–378.PubMedCrossRefGoogle Scholar
  33. (33).
    Wang, H.Y. 1981. Integrating biochemical separation and purification steps in fermentation processes. Ann. NY Acad. Sci. 413: 313–321.CrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1986

Authors and Affiliations

  • B. Mattiasson
    • 1
  1. 1.Dept. of Biotechnology Chemical CenterUniversity of LundLundSweden

Personalised recommendations