Vaccines - the Synthetic Antigen Approach

  • D. J. Rowlands
Conference paper
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 35)


Technological and conceptual advances in the last few years have opened up a variety of new avenues towards improvement of existing vaccines and providing vaccines against diseases for which there is no protection currently available. These new approaches are discussed with particular emphasis on those involving synthetic peptide antigens.


Synthetic Peptide Cold Spring Harbor Laboratory Intact Protein Antigenic Site Keyhole Limpet Hemocyanin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Audibert, F.; Jolivet, M.; Chedid, L.A.; Arnon, R.; and Sela, M. 1982. Successful immunization with a totally synthetic diphtheria vaccine. Proc. Natl. Acad. Sci. USA 79: 5042–5046.PubMedCrossRefGoogle Scholar
  2. (2).
    Bittle, J.L.; Houghten, R.A.; Alexander, H.; Shinnick, T.M.; Sutcliffe, J.G.; Lerner R.A.; Rowlands, D.J.; and Brown, F. 1982. Protection against FMD by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 29–8: 30–33.CrossRefGoogle Scholar
  3. (3).
    Both, G.W.; Sleigh, M.J.; Cox, N.J.; and Kendal, A.P. 1983. Antigenic drift in influenza virus H3 haemagglutinin from 1968 to 1980: Multiple evolutionary pathways and sequential amino acid changes at key antigenic sites. J. Virol. 48: 52–80.PubMedGoogle Scholar
  4. (4).
    Buller, R.M.L.; Smith, G.L.; Cremer, K.; Notkins, A.L.; and Moss, B. 1984. Infectious vaccinia virus TK minus hybrid recombinants which express foreign genes are less virulent than wild type virus in BALB/cBYs mice. In Vaccines ’85, eds. R.M. Chanock, R.A. Lerner, and F. Brown, pp. 163–167. New York: Cold Spring Harbor Laboratory.Google Scholar
  5. (5).
    Cann, A.J.; Stanway, G.; Hughes, P.J.; Minor, P.D.; Evans, D.M.A.; Schild, G.C.; and Almond, J.W. 1984. Reversion to neurovirulence of the live attenuated Sabin type 3 oral poliovirus vaccine. Nucl. Acids Res. 12: 7787–7792.PubMedCrossRefGoogle Scholar
  6. (6).
    Chedid, L.A.; Parant, M.A.; Audibert, F.M.; Riveau, G.J.; Parant, F.J.; Lederer, E.; Choay, J.P.; and Lefrancier, P.L. 1982. Biological activity of a new synthetic muramyl peptide adjuvant devoid of pyrogenicity. Infect. Immun. 35: 417–424.PubMedGoogle Scholar
  7. (7).
    Diamond, D.C.; Jameson, B.A.; Emini, E.A.; and Wimmer, E. 1985. Antibody resistant variants of poliovirus type 1. In Vaccines ’85, eds. R.M. Chanock, R.A. Lerner, and F. Brown, pp. 163–167. New York: Cold Spring Harbor Laboratory.Google Scholar
  8. (8).
    Dreesman, G.R.; Sparrow, J.T.; Kennedy, R.C.; and Melnick, J.L. 1984. Immunogenic and antigenic activities of a cyclic synthetic HBsAg peptide. In Modern Approaches to Vaccines, eds. R.M. Chanock and R.A. Lerner, pp. 115–119. New York: Cold Spring Harbor Laboratory.Google Scholar
  9. (9).
    Emini, E.A.; Jameson, B.A.; and Wimmer, E. 1983. Priming for and induction of anti poliovirus neutralizing antibodies by synthetic peptides. Nature 304: 699–703.PubMedCrossRefGoogle Scholar
  10. (10).
    Ferguson, M.; Evans, D.M.A.; Magrath, D.I.; Minor, P.D.; Almond, J.W.; and Schild, G.C. 1985. Induction by synthetic peptides of broadly reactive, type specific neutralizing antibody to poliovirus type 3. Virology 143: 505–515.PubMedCrossRefGoogle Scholar
  11. (11).
    Francis, M.J.; Fry, C.M.; Rowlands, D.J.; Brown, F.; Bittle, J.L.; Houghten, R.A.; and Lerner, R.A. 1985. Priming with peptides of foot and mouth disease virus. In Vaccines ’85, eds. R.M. Chanock, R.A. Lerner, and F. Brown, pp. 203–210. New York: Cold Spring Harbor Laboratory.Google Scholar
  12. (12).
    Geyson, H.M.; Meloen, R.H.; and Barteling, S.J. 1984. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81: 3998–4002.CrossRefGoogle Scholar
  13. (13).
    Geyson, H.M.; Barteling, S.J.; and Meloen, R.H. 1985. Small peptides induce antibodies with a sequence and structure requirement for binding antigen comparable to antibodies raised against the native protein. Proc. Natl. Acad. Sci. USA 82: 178–182.CrossRefGoogle Scholar
  14. (14).
    Green, N.; Alexander, H.; Olson, A.; Alexander, S.; Shinnick, T.M.; Sutcliffe, J.G.; and Lerner, R.A. 1982. Immunogenic structure of the influenza virus hemagglutinin. Cell 28: 477–487.PubMedCrossRefGoogle Scholar
  15. (15).
    Lerner, R.A. 1982. Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature 299: 592–596.CrossRefGoogle Scholar
  16. (16).
    Makoff, A.J.; Paynter, C.A.; Rowlands, D.J.; and Boothroyd, J.C. 1982. Comparison of the amino acid sequence of the major immunogen from three serotypes of foot and mouth disease virus. Nucl. Acids Res. 10: 8285–8295.PubMedCrossRefGoogle Scholar
  17. (17).
    Minor, P.D.; Schild, G.C.; Bootman, J.; Evans, D.M.A.; Ferguson, M.; Reeve, P.; Spitz, M.; Stanway, G.; Cann, A.J.; Hauptmann, R.; Clarke, L.D.; Mountford, R.C.; and Almond, J.N. 1983. Location and primary structure of a major antigenic site for poliovirus neutralization. Nature 301: 674–679.PubMedCrossRefGoogle Scholar
  18. (18).
    Muller, G.M.; Shapiro, M.; and Arnon, R. 1982. Anti influenza response achieved by immunization with a synthetic conjugate. Proc. Natl. Acad. Sci. USA 79: 569–573.PubMedCrossRefGoogle Scholar
  19. (19).
    Niman, H.L.; Houghten, R.A.; Walker, L.E.; Reisfeld, R.A.; Wilson, I.A.; Hogle, J.M.; and Lerner, R.A. 1983. Generation of protein- reactive antibodies by short peptides is an event of high frequency: Implications for the structural basis of immune recognition. Proc. Natl. Acad. Sci. USA 80: 4949–4953.PubMedCrossRefGoogle Scholar
  20. (20).
    Nomato, A.; Omata, T.; Toyoda, H.; Kuge, S.; Hanie, H.; Kataoka, Y.; Genba, Y.; Nakano, Y.; and Imura, N. 1982. Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proc. Natl. Acad. Sci. USA 79: 5793–5797.CrossRefGoogle Scholar
  21. (21).
    Nunberg, J.H.; Gilbert, J.H.; Rodgers, G.; Snead, R.M.; Nitecki, D.; and Winston, S. 1985. Localization of a determinant of virus neutralization on feline leukaemia virus envelope protein GP70. In Vaccines ’85, eds. R.M. Chanock, R.A. Lerner, and F. Brown, pp. 221–226. New York: Cold Spring Harbor Laboratory.Google Scholar
  22. (22).
    Pfaff, E.; Mussgay, M.; Bohm, H.O.; Schulz, G.E.; and Schaller, H. 1982. Antibodies against a preselected peptide recognize and neutralize FMDV. EMBO J. 1: 869–874.PubMedGoogle Scholar
  23. (23).
    Stanway, G.; Hughes, P.J.; Mountford, R.; Reeve, R.; Minor, P.D.; Schild, G.C.; and Almond, J.W. 1984. Comparison of the complete nucleotide sequences of the genomes of the neurovirulent poliovirus P3/Leon/37 and its attenuated Sabin vaccine derivative P3/Leon 12a,b. Proc. Natl. Acad. Sci. USA 81: 1539–1540.PubMedCrossRefGoogle Scholar
  24. (24).
    Strohmaier, K.; Franze, R.; and Adam, K.-H. 1982. Location and characterization of the antigenic portion of the FMDV immunizing protein. J. Gen. Virol. 59: 295–306.PubMedCrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1986

Authors and Affiliations

  • D. J. Rowlands
    • 1
  1. 1.Wellcome Biotechnology Ltd.Pirbright, WokingEngland

Personalised recommendations