Skip to main content

Thiocyanate Interference at Chloride-Selective Microelectrodes in Crayfish Stretch Receptor Neurons: Evidence for a Non-passive Thiocyanate Distribution

  • Chapter
  • 78 Accesses

Abstract

Since the introduction of ion-selective microelectrodes (SME) by Walker [19], a wealth of evidence has been accumulated indicating that the transmembrane Cl gradient is not in equilibrium with the membrane potential E m . Depending upon the preparation, both higher (e.g., sheep heart Purkinje fibers [18]; guinea pig vas deferens [1]) and lower intracellular Cl levels (e.g., crayfish stretch receptor [7,9a]) than those expected from a passive distribution have been measured. A low intracellular Cl activity a icl , maintained by Cl extrusion, appears to be of particular significance in those neurons where the driving force for inhibitory postsynaptic potentials (i. p. s. p.) is provided by the Cl gradient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aickin CC, Brading AF (1982) Measurement of intracellular chloride in guinea-pig vas deferensby ion analysis, 36Cl and micro-electrodes. J Physiol (Lond) 326: 139–154

    CAS  Google Scholar 

  2. Aickin CC, Deisz RA, Lux HD (1981) On the action of the anticonvulsant 5, 5-diphenylhydantoin and the convulsant picrotoxin in crayfish stretch receptor. J Physiol (Lond) 315: 157–173

    CAS  Google Scholar 

  3. Aickin CC, Deisz RA, Lux HD (1982) Ammonium action on postsynaptic inhibition in crayfish neurones: implications for the mechanism of chloride extrusion. J Physiol (Lond) 329: 319–339

    CAS  Google Scholar 

  4. Araki T, Ito M, Oscarson O (1961) Anion permeability of the synaptic and non-synaptic motoneurone membrane. J Physiol (Lond) 159: 410–435

    CAS  Google Scholar 

  5. Coombs IS, Eccles IC, Fatt P (1955).The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J Physiol (Lond) 130: 326–373

    CAS  Google Scholar 

  6. Cousin IL, Motais R (1976) The role of carbonic anhydrase inhibitors on anion permeability into ox red blood cells. J Physiol (Lond) 256: 61–80

    CAS  Google Scholar 

  7. Deisz RA, Lux HD (1976) Effects of furosemide on intracellular chloride concentration in crayfish stretch receptor. Pflugers Arch 365: R32

    Google Scholar 

  8. Deisz RA, Lux HD (1977) Diphenylhydantoin prolongs postsynaptic inhibition and iontophoretic GABA action in the crayfish stretch receptor. Neurosci. Lett. 5: 199–203

    Article  PubMed  CAS  Google Scholar 

  9. Deisz RA, Lux HD (1978) Intracellular chloride concentration and postsynaptic inhibition in crayfish stretch receptor. Drug Res 28: 870–871

    CAS  Google Scholar 

  10. Deisz RA, Lux HD (1982) The role of intracellular chloride in hyperpolarizing post-synaptic inhibition of crayfish stretch receptor neurones. J Physiol (Lond) 326: 123–138

    CAS  Google Scholar 

  11. Gutknecht I, Walter A (1982) SCN- and HSCN transport through lipid bilayer membranes a model for SCN- inhibition of gastric acid secretion. Biochim. Biophys. Acta 685: 233–240

    Article  PubMed  CAS  Google Scholar 

  12. Katz U, Lau KR, Ramos MMP, Ellory IC (1982) Thiocyanate transport across fish intestine (Pleuronectes platessa). J Membr Biol 66: 9–14

    Article  PubMed  CAS  Google Scholar 

  13. Kelly IS, Krnjevic K, Morris ME, Vim GKW (1969) Anionic permeability of cortical neurones. Exp Brain Res 7: 11–31

    Article  PubMed  CAS  Google Scholar 

  14. Lux HD (1971) Ammonium and chloride extrusion: Hyperpolarizing synaptic inhibition in spinal motoneurons. Science 173: 555–557

    Article  PubMed  CAS  Google Scholar 

  15. Lux HD (1974) Fast recording ion specific microelectrodes: Their use in pharmacological studies in the CNS. Neuropharmacology 13: 509–517

    Article  PubMed  CAS  Google Scholar 

  16. Spring KR, Kimura G (1978) Chloride reabsorbtion by renal proximal tubules of necturus. J Membr Biol 38:233–254

    Article  PubMed  CAS  Google Scholar 

  17. Thomas RC (1977) The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol (Lond) 273: 317–338

    CAS  Google Scholar 

  18. van Harreveld A (1936) A physiological solution for fresh-water crustaceans. Proc Soc Exp Biol Med 34: 428–432

    Google Scholar 

  19. Vaughan-Jones RD (1979) Non-passive Cl−-distribution in mammalian heart muscle: microelectrode measurement of the intracellular chloride activity. J Physiol (Lond) 295, 83–109

    CAS  Google Scholar 

  20. Walker JL (1971) Ion specific liquid ion exchanger microelectrodes. Anal Chem 43, 89A–93A

    Article  CAS  Google Scholar 

  21. Wright EM, Diamond JM (1977) Anion selectivity in biological systems. Physiol Rev 57, 109–156

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deisz, R.A., Lux, H.D. (1985). Thiocyanate Interference at Chloride-Selective Microelectrodes in Crayfish Stretch Receptor Neurons: Evidence for a Non-passive Thiocyanate Distribution. In: Kessler, M., et al. Ion Measurements in Physiology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70518-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70518-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15468-6

  • Online ISBN: 978-3-642-70518-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics