Importance and Determination of Chemical Species in Biological Systems

Group Report
  • W. R. Wolf
  • K. J. Irgolic
  • K. J. Ludwicki
  • R. J. Mehlhorn
  • W. Mertz
  • C. F. Mills
  • U. Oehmichen
  • M. Piscator
  • P. J. Sadler
  • R. N. F. Thorneley
  • G. Weber
  • M. Zeppezauer
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 33)

Abstract

Biological systems constantly synthesize, change, and degrade organic and inorganic chemical species. These processes and the interactions among chemical compounds maintain and propagate life. The major “organic elements” (C, H, N, O, P, S) combine in many ways to give compounds such as amino acids, lipids, carbohydrates, and nucleotides. These simple compounds serve as building blocks for proteins, enzymes, membranes, structural tissues, and genetic materials. Knowledge of the “organic” chemistry of biological systems is quite advanced. However, the organic chemistry of life would not be possible without certain inorganic elements. The beneficial and detrimental influences of inorganic chemical species, in this report called chemical species or simple species, on biological systems was the main theme of this group report.

Keywords

Mercury Chromium Platinum Fourier Transform Infrared Spectroscopy Palladium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernat I (1983) Iron Metabolism. Plenum Press, New YorkGoogle Scholar
  2. Bertini I (1983) The coordination properties of the active site of zinc enzymes. In: Bertini I, Drago RS, Luchinat C (eds) The Coordination Chemistry of Metalloenzymes. D. Reidel Publishing Co., Dordrecht, Holland, pp 1–18Google Scholar
  3. Chesters JK (1981) Nutritional chemistry of inorganic trace constituents in the diet. Chem Soc Rev 10: 255–269CrossRefGoogle Scholar
  4. Cotzias GC, Borg DC, Bertinchamps AJ (1960) Clinical experiences with manganese. In: Feren MJ (ed) Metal Binding in Medicine. J. Lippincott, Philadelphia, pp 50–58Google Scholar
  5. Dabrowiak JC, Greenaway FT, Santillo FS, Crooke ST, Essery JM (1980) The iron bleomycins. ACS Symp Ser 140: 237 - 248CrossRefGoogle Scholar
  6. Friberg L, Vostal J (eds) (1972) Mercury in the Environment. CRC Press, Cleveland, OhioGoogle Scholar
  7. Hacker MP, Double EB, Krakhuff IH (eds) (1984) Platinum Coordination Complexes in Cancer Therapy. Martinus Nijhoff, BostonGoogle Scholar
  8. Holm RH (1981) Metal Clusters in biology: quest for a synthetic representation of the catalytic site of nitrogenase. Chem Soc Rev 10: 455–190CrossRefGoogle Scholar
  9. Irgolic KJ (1985) Environmental inorganic analytical chemistry. In: Irgolic KJ, Martell AE (eds) Environmental Inorganic Chemistry. VCH Publishers, Deerfield Beach, FL, pp 547–564Google Scholar
  10. Irgolic KJ (1986) Arsenic in the environment. In: Xavier AV (ed) Frontiers in Bioinorganic Chemistry. VCH Verlagsgemeinschaft, Weinheim, Germany, pp 399–408Google Scholar
  11. Kagi JHR, Nordberg M (1979) Metallothionein. Birkhauser Verlag, Basel, SwitzerlandGoogle Scholar
  12. Lippard SJ (ed) (1983) Platinum, Gold, and Other Metal Chemotherapeutic Agents. ACS Symp Ser 290. American Chemical Society, Washington, DCGoogle Scholar
  13. Martell AE (ed) (1980) Inorganic Chemistry in Biology and Medicine. ACS Symp Ser 140. American Chemical Society, Washington, DCGoogle Scholar
  14. Merian E (ed) (1984) Metalle in der Umwelt: Verteilung, Analytik und biologische Relevanz. Verlag Chemie, Weinheim, GermanyGoogle Scholar
  15. National Academy of Sciences/NRC (1974) Chromium. U.S. National Academy of Sciences, Washington, DCGoogle Scholar
  16. National Academy of Sciences/NRC (1976) Selenium. U.S. National Academy of Sciences, Washington, DC, p 56Google Scholar
  17. National Academy of Sciences/NRC (1977) Copper. U.S. National Academy of Sciences, Washington, DCGoogle Scholar
  18. Palermo RE, Singh R, Bashkin JK, Holm RH (1984) Molybdenum atom ligand Substitution reactions of MoFe3S4 cubane type Clusters: synthesis and structures of Clusters containing Mo-bound pseudosubstrates of nitrogenase. J Am Chem Soc 106:2600–2612CrossRefGoogle Scholar
  19. Pickford CJ (1981) Sources of, and analytical advances in, trace inorganic constituents in food. Chem Soc Rev 10: 245–254CrossRefGoogle Scholar
  20. Prasad A (ed) (1976) Trace Elements in Human Health and Disease, vol I. Zinc and Copper. Academic Press, New YorkGoogle Scholar
  21. Spiro TG (1983) Zinc Enzymes. Wiley Interscience, New YorkGoogle Scholar
  22. Thomson AJ (1985) Iron-sulphur proteins. In: Harrison P (ed) Metalloproteins. Part 1: Metal Proteins with Redox Roles. Verlag Chemie, Weinheim, Germany, pp 72–120Google Scholar
  23. Vahter M, Enxall J (1983) In-vivo reductions of arsenate in mice and rabbits. Envir Res 32:14–24CrossRefGoogle Scholar
  24. Vahter M, Marafante E, Dencker L (1983) Metabolism of arsenobetaine in mice, rats, and rabbits. Sei Total Envir 30: 197–211CrossRefGoogle Scholar
  25. Venugopal B, Luckey TD (1979) Metal Toxicity in Mammals. Plenum Press, New YorkGoogle Scholar
  26. Xavier AV (ed) (1986) Frontiers in Bioinorganic Chemistry. VCH Publishers, Weinheim, GermanyGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen 1986

Authors and Affiliations

  • W. R. Wolf
  • K. J. Irgolic
  • K. J. Ludwicki
  • R. J. Mehlhorn
  • W. Mertz
  • C. F. Mills
  • U. Oehmichen
  • M. Piscator
  • P. J. Sadler
  • R. N. F. Thorneley
  • G. Weber
  • M. Zeppezauer

There are no affiliations available

Personalised recommendations