Skip to main content

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 33))

Abstract

A knowledge of chemical species is fundamental to understanding the behavior of substances in environmental processes. Thermodynamic data provide a basis for predicting the equilibrium state of a chemical system. There are three basic steps in formulating an equilibrium model for trace constituents in seawater. The composition of the medium with respect to the major ions must be specified on a conventional concentration scale such as molality. The interactions among the major ions must be considered in order to determine the free-ligand concentrations or activities which are available to interact with the trace constituents. Finally, the complexation of a trace element by the ligands in seawater can be calculated. This procedure is illustrated using an ion-pair model for the major ions and considering copper, iron(II), iron(III), cadmium, and lead as examples of trace elements. Equilibrium models have been particularly successful in accounting for the chemical behavior of many solution-phase reactions such as ionic interactions, weak acid dissociation, and some aspects of trace-metal complexation. Caution must be used in applying this approach to redox reactions and heterogeneous phase reactions because kinetic factors often limit the attainment of equilibrium. Biological systems are inherently far from equilibrium. Nevertheless, considerations of the equilibrium state can be useful even in systems that are not in equilibrium; departures from equilibrium indicate the important role of kinetic factors. Substantial advances have been made in recent years in obtaining a suitable base of thermodynamic data for marine systems, but limitations exist because data are lacking for many trace-element reactions involving some of the important oxyanions in seawater. The existing equilibrium data base is inadequate to prediet the effects of temperature and pressure on most reactions in the marine environment. A variety of analytical methods are available to test the predictions of equilibrium models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrland W (1975) Metal complexes present in seawater. In: Goldberg ED (ed) The Nature of Seawater. Dahlem Konferenzen, Berlin, pp 219–244

    Google Scholar 

  • Baes CF Jr, Mesmer RE (1976) The Hydrolysis of Cations. John Wiley, New York

    Google Scholar 

  • Branica M, Sipos L, Bubic S, Kozar S (1976) Electroanalytical determination and characterization of some heavy metals in seawater. In: LaFleur PD (ed) Accuracy in Trace Analysis: Sampling, Sample Handling, Analysis, National Bureau of Standards Special Publication 422, vol 2. U.S. Government Printing Office, Washington, DC, pp 917–928

    Google Scholar 

  • Breck WG (1974) Redox levels in the sea. In: Goldberg ED (ed) The Sea: Ideas and Observations on Progress in the Study of the Sea, vol 5. John Wiley, New York, pp 153–179

    Google Scholar 

  • Brown MF, Kester DR (1980) Ultraviolet spectroscopic studies related to iron complexes in marine systems. Thalassia Jugoslavia 16: 191–201

    CAS  Google Scholar 

  • Buch K, Harvey HW, Wattenberg H, Gripenberg S (1932) Über das Kohlensauresystem im Meerwasser. Conseil Permanent pour 1’Exploration de la Mer. Rapport et Proces-Verbaux 79: 1–70

    Google Scholar 

  • Byrne RH (1981) Inorganic lead complexation in natural seawater determined by UV spectroscopy. Nature 290 (5806): 487–489

    Article  CAS  Google Scholar 

  • Byrne RH (1983) Trace metal complexation in high ligand variety natural media. Mar Chem 12: 15–24

    Article  CAS  Google Scholar 

  • Byrne RH, Kester DR (1976a) A potentiometric study of ferric ion complexes in synthetic media and seawater. Mar Chem 4:275–287

    Article  CAS  Google Scholar 

  • Byrne RH, Kester DR (1976b) Solubility of hydrous ferric oxide and iron speciation in seawater. Mar Chem 4:255–274

    Article  CAS  Google Scholar 

  • Byrne RH, Kester DR (1981) Ultraviolet spectroscopic study of ferric equilibria at high chloride concentrations. J Sol Chem 10: 51–67

    Article  CAS  Google Scholar 

  • Byrne RH, Miller WL (1984) Medium composition dependence of lead(II) complexation by chloride ion. Am J Sci 284: 79–94

    Article  CAS  Google Scholar 

  • Byrne RH, Miller WL (1985) Copper(II) carbonate complexation in seawater. Geochim Cosmochim Acta 49 (8): 1837–1844

    Article  CAS  Google Scholar 

  • Byrne RH, Young RW (1982) Mixed halide complexes of lead. A comparison with theoretical predictions. J Sol Chem 11 (2): 127–136

    Article  CAS  Google Scholar 

  • Byrne RH, van der Weijden CH, Kester DR, Zuehlke RW (1983) Evaluation of the CuCl+ stability constant and molar absorptivity in aqueous media. J Sol Chem 12: 581–595

    Article  CAS  Google Scholar 

  • Daly FJ, Brown CW, Kester DR (1972) Sodium and magnesium sulfate ion-pairing. Evidence from Raman spectroscopy. J Phys Chem 76: 3664–3668

    Google Scholar 

  • Dyrssen D, Wedborg M (1974) Equilibrium calculations of the speciation of elements in seawater. In: Goldberg ED (ed) The Sea: Ideas and Observations on Progress in the Study of the Sea, vol 5. John Wiley, New York, pp 181–195

    Google Scholar 

  • Emerson S, Cranston RE, Liss PS (1979) Redox species in a reducing fjord: equilibrium and kinetic considerations. Deep-Sea Res 26 (8): 859–878

    Article  CAS  Google Scholar 

  • Fisher F (1967) Ion pairing of magnesium sulfate in seawater: determined by ultrasonic absorption. Science 157: 823

    Article  PubMed  CAS  Google Scholar 

  • Garrels RM, Thompson ME (1962) A chemical model for seawater at 25 °C and one atmosphere total pressure. Am J Sci 260: 57–66

    Article  CAS  Google Scholar 

  • Hanson AK Jr, Quinn JG (1983) The distribution of dissolved and organically complexed copper and nickel in the Middle Atlantic Bight. Can J Fish Aquat Sci 40: 151–161

    Article  Google Scholar 

  • Hanson AK Jr, Sakamoto-Arnold CM, Huizenga DL, Kester DR (1986) Copper speciation in oceanic waters. Mar Chem, in press

    Google Scholar 

  • Huizenga DL, Kester DR (1979) Protonation equilibria of marine dissolved organic matter. Limnol Oceanog 24: 145–150

    Article  CAS  Google Scholar 

  • Huizenga DL, Kester DR (1983) The distribution of total and electrochemically available copper in the northwestern Atlantic Ocean. Mar Chem 13: 281–291

    Article  CAS  Google Scholar 

  • Huizenga DL, Kester DR (1984) Stripping polarograms for film electrodes. J Electroan Chem 164: 229–236

    Article  CAS  Google Scholar 

  • Johnson KS, Pytkowicz RM (1979) Ion association of chloride and sulphate with sodium, potassium, magnesium, and calcium in seawater at 25 °C. Mar Chem 8: 87–93

    Article  CAS  Google Scholar 

  • Kester DR, Byrne RH (1972) Chemical forms of iron in seawater. In: Horn DR (ed) Ferromanganese Deposits on the Ocean Floor. Lamont-Doherty Geological Observatory, Palisades, NY, pp 107–116

    Google Scholar 

  • Kester DR, Byrne RH Jr, Liang Y-J (1975) Redox reactions and solution complexes of iron in marine systems. In: Church TM (ed) Chemistry in the Coastal Environment, ACS Symposium Series No. 18. American Chemical Society, Washington, DC, pp 56–79

    Google Scholar 

  • Kester DR, Pytkowicz RM (1969) Sodium, magnesium, and calcium ion-pairs in seawater at 25 °C. Limnol Oceanog 14: 686–692

    Article  CAS  Google Scholar 

  • Landing WM, Cutter GA, Smith GJ, Bruland KW (1984) Suboxic redox chemistry at VERTEX-II and -III. EOS 65 (45): 924

    Google Scholar 

  • Lindberg RD, Runnells DD (1984) Ground water redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 225: 925–927

    Article  PubMed  CAS  Google Scholar 

  • Liss PS, Herring JR, Goldberg ED (1978) The iodide/iodate system in seawater as a possible measure of redox potential. Nature Phys Sci 242: 108–109

    Google Scholar 

  • Long DT, Angino EE (1977) Chemical speciation of Cd, Cu, Pb, and Zn in mixed freshwater, seawater, and brine solutions. Geochim Cosmochim Acta 41: 1183–1191

    Google Scholar 

  • Millero FJ, Schreiber DR (1982) Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. Am J Sci 282: 1508–1540

    Article  CAS  Google Scholar 

  • Mills GL, Hanson AK Jr, Quinn JG, Lammela WR, Chasteen ND (1982) Chemical studies of copper-organic complexes isolated from estuarine waters using C-18 reverse-phase liquid chromatography. Mar Chem 11:355–377

    Google Scholar 

  • Morel FMM, Morel-Laurens MML (1983) Trace metals and plankton in the oceans: facts and speculations. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace Metals in Seawater. Plenum Press, New York, pp 841–869

    Google Scholar 

  • Nürnberg HW, Valenta P (1983) Potentialities and applications of voltammetry in chemical speciation of trace metals in the sea. In: Wong CS, Boyle E, Bruland

    Google Scholar 

  • KW, Burton JD, Goldberg ED (eds) Trace Metals in Seawater. Plenum Press, New York, pp 671–697

    Google Scholar 

  • O’Connor TP, Kester DR (1975) Adsorption of copper and cobalt from fresh and marine systems. Geochim Cosmochim Acta 39: 1531–1543

    Article  Google Scholar 

  • Parsons R (1975) The role of oxygen in redox processes in aqueous solutions. In: Goldberg ED (ed) The Nature of Seawater. Dahlem Konferenzen, Berlin, pp 505–522

    Google Scholar 

  • Paulson AJ, Kester DR (1980) Copper(II) ion hydrolysis in aqueous solution. J Sol Chem 9:269–277

    Google Scholar 

  • Piotrowicz SR, Harvey GR, Springer-Young M, Courant RA, Boran DA (1983) Studies of cadmium, copper, and zinc interactions with marine fulvic and humic materials in seawater using anodic stripping voltammetry. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace Metals in Seawater. Plenum Press, New York, pp 699–717

    Google Scholar 

  • Pytkowicz RM, Hawley JE (1974) Bicarbonate and carbonate ion-pairs and a model of seawater at 25 °C. Limnol Oceanog 19: 223–234

    Article  Google Scholar 

  • Skirrow G (1975) The dissolved gases — carbon dioxide. In: Riley JP, Skirrow G (eds) Chemical Oceanography, 2nd edn, vol 2. Academic Press, London, pp 1–192

    Google Scholar 

  • Smith RM, Martell AE (1976) Critical Stability Constants, vol 4: Inorganic Complexes. Plenum Press, New York

    Google Scholar 

  • Sunda WG, Lewis JAM (1978) Effect of complexation by natural ligands on the toxicity of copper to a unicellular alga, Monochrysis lutherL Limnol Oceanog 23: 870–876

    Article  CAS  Google Scholar 

  • Trick CG, Andersen RJ, Gillain A, Harrison PJ (1983) Prorocentrum: an extracellular siderophore produced by the marine dinoflagellate Prorocentrum minimum. Science 219: 306–308

    Article  PubMed  CAS  Google Scholar 

  • Turner DR, Whitfield M, Dickson AG (1981) The equilibrium speciation of dissolved components in freshwater and seawater at 25 °C and 1 atm pressure. Geochim Cosmochim Acta 45: 855–881

    Article  CAS  Google Scholar 

  • Varney MJ, Mantoura RFC, Whitfield M, Turner DR, Riley JP (1983) Potentiometric and conformational studies of the acid-base properties of fulvic acid from natural waters. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace Metals in Seawater. Plenum Press, New York, pp 751–772

    Google Scholar 

  • Williams PJ leB (1975) Biological and chemical aspects of dissolved organic matter in sea water. In: Riley JP, Skirrow G (eds) Chemical Oceanography, 2nd edn, vol 2. Academic Press, London, pp 301–363

    Google Scholar 

  • Zafiriou OC, True MB (1980) Interconversion of iron(III) hydroxy complexes in seawater. Mar Chem 8: 281–288

    Article  CAS  Google Scholar 

  • Zirino A, Yamamoto S (1972) A pH-dependent model for the chemical speciation of copper, zinc, cadmium, and lead in seawater. Limnol Oceanog 17: 661–671

    Article  CAS  Google Scholar 

  • Zuehlke RW, Kester DR (1983) Ultraviolet spectroscopic determination of the stability constants for copper carbonate and bicarbonate complexes up to the ionic strength of seawater. Mar Chem 13: 203–226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Bernhard F. E. Brinckman P. J. Sadler

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen

About this paper

Cite this paper

Kester, D.R. (1986). Equilibrium Models in Seawater: Applications and Limitations. In: Bernhard, M., Brinckman, F.E., Sadler, P.J. (eds) The Importance of Chemical “Speciation” in Environmental Processes. Dahlem Workshop Reports, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70441-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70441-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70443-7

  • Online ISBN: 978-3-642-70441-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics