Skip to main content

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 33))

Abstract

In recent years analytical techniques have become available which make it possible to identify individual chemical species in seawater and marine particulates, or at least to obtain operational information on the structural environment of some elements. These methods include various extraction and chromatographic techniques, mass spectrometry, hydride generation, and electrochemical techniques.

The major processes affecting chemical species in seawater are solid/aqueous phase exchange, electron exchange (redox chemistry), proton exchange (acid-base chemistry), and ligand exchange (complex chemistry). For a few elements, mostly the nonmetallic and metalloid elements, the formation of covalent bonds is of importance in controlling species distribution in the marine environment. Kinetic factors are important in the persistence of nonequilibrium species found for a number of elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad I, Chau YK, Wong PTS, Carty AJ, Taylor L (1980) Chemical alkylation of lead(II) salts to tetraalkyllead(IV) in aqueous solution. Nature 287: 716–717

    Article  PubMed  CAS  Google Scholar 

  • Andreae MO (1977) Determination of arsenic species in natural waters. Anal Chem 49: 820–823

    Article  PubMed  CAS  Google Scholar 

  • Andreae MO (1978) Distribution and speciation of arsenic in natural waters and marine algae. Deep-Sea Res 25: 391–402

    Article  CAS  Google Scholar 

  • Andreae MO (1983a) Arsenic (by hydride generation/AAS); antimony (by hydride generation/AAS); germanium (by hydride generation/AAS). In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis. Verlag Chemie, Weinheim, pp 218–236

    Google Scholar 

  • Andreae MO (1983b) Biotransformation of arsenic in the marine environment. In: Lederer WH, Fensterheim RJ (eds) Industrial, biomedical, environmental perspectives. Van Nostrand Reinhold, New York, pp 378–392

    Google Scholar 

  • Andreae MO ( 1983 c) The determination of the chemical species of some of the “hydride elements” (arsenic, antimony, tin, and germanium) in seawater: methodology and results. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 1–19

    Google Scholar 

  • Andreae MO (1984) Determination of inorganic tellurium species in natural waters. Anal Chem 56: 2064–2066

    Article  PubMed  CAS  Google Scholar 

  • Andreae MO (1985) Organoarsenic compounds in the environment. In: Craig PJ (ed) Organometallic compounds in the environment. Longman, London, pp 198–228

    Google Scholar 

  • Andreae MO, Byrd JT (1984) Determination of tin and methyltin species by hydride generation and detection with graphite-furnace atomic absorption or flame emission spectrometry. Anal Chim Acta 156: 147–157

    Article  CAS  Google Scholar 

  • Andreae MO, Froelich PN (1981) Determination of germanium in natural waters by graphite furnace atomic absorption spectrometry with hydride generation. Anal Chem 53: 287–291

    Article  CAS  Google Scholar 

  • Andreae MO, Froelich PN (1984) Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea. Tellus 36B: 101–117

    Google Scholar 

  • Andreae MO, Klumpp DW (1979) Biosynthesis and release of organoarsenic compounds by marine algae. Envir Sci Technol 13: 738–741

    Article  CAS  Google Scholar 

  • Andreae MO, Asméde JF, Foster P, Van’t dack L (1981) Determination of antimony(III), antimony(V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation. Anal Chem 53: 1766 — 1771

    Article  CAS  Google Scholar 

  • Andren AW, Harriss RC (1975) Observations on the association between mercury and organic matter dissolved in natural waters. Geochim Cosmochim Acta 39: 1253–1257

    Article  CAS  Google Scholar 

  • Bacon MP, Anderson RF (1982) Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. J Geophys Res 87: 2045 - 2056

    Article  CAS  Google Scholar 

  • Baes, CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York Bernhard M, Andreae MO (1984) Transport of trace metals in marine food chains. In: Nriagu JO (ed) Changing metal cycles and human health. Dahlem Konferenzen. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 143–167

    Google Scholar 

  • Bertine KK, Lee DS (1983) Antimony content and speciation in the water column and interstitial waters of Saanich Inlet. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 21–38

    Google Scholar 

  • Bertrand PA, Choppin GR (1982) Separation of actinides in different oxidation states by solvent extraction. Radiochim Acta 31: 135 - 137

    CAS  Google Scholar 

  • Boulegue J, Lord CJ III, Church TM (1982) Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochim Cosmochim Acta 46: 453–464

    Google Scholar 

  • Braman RS, Foreback CC (1973) Methylated forms of arsenic in the environment. Science 182: 1247–1249

    Article  PubMed  CAS  Google Scholar 

  • Braman RS, Tompkins MA (1979) Separation and determination of nanogram amounts of inorganic tin and methyltin compounds in the environment. Anal Chem 51: 12–19

    Article  PubMed  CAS  Google Scholar 

  • Brinckman FE, Jackson JA, Blair WR, Olson GJ, Iverson WP (1983) Ultratrace speciation and biogenesis of methyltin transport species in estuarine waters. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 39–72

    Google Scholar 

  • Bruland KW (1983) Trace elements in sea-water. In: Chemical oceanography, vol 8. Academic Press, London, pp 157–220

    Google Scholar 

  • Bruland KW, Franks RP, Knauer GA, Martin JH (1979) Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel at the nanogram per liter level in sea water. Anal Chim Acta 105: 233–245

    Article  CAS  Google Scholar 

  • Byrd JT, Andreae MO (1982) Tin and methyltin species in seawater: concentrations and fluxes. Science 218: 565 - 569

    Article  PubMed  CAS  Google Scholar 

  • Byrne RH (1981) Inorganic lead complexation in natural seawater determined by UV spectroscopy. Nature 290: 487–489

    Article  CAS  Google Scholar 

  • Collier RW, Edmond JM (1983) Plankton compositions and trace element fluxes from the surface ocean. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 789–809

    Google Scholar 

  • Cosovic B, Degobbis D, Bilinski H, Branica M (1982) Inorganic cobalt species in seawater. Geochim Cosmochim Acta 46: 151–15

    Article  CAS  Google Scholar 

  • Craig PJ (1980) Metal cycles and biological methylation. In: Hutzinger O (ed) Handbook of environmental chemistry, vol 1, part A. Springer-Verlag, Berlin, pp 169–227

    Google Scholar 

  • Cutter GA (1978) Species determination of selenium in natural waters. Anal Chim Acta 98: 59–66

    Article  CAS  Google Scholar 

  • Cutter GA (1982) Selenium in reducing water. Science 217: 829–831

    Article  PubMed  CAS  Google Scholar 

  • Cutter GA, Bruland KW (1984) The marine biogeochemistry of selenium: a reevaluation. Limnol Oceanog, 29: 1179–1192

    Article  CAS  Google Scholar 

  • Dahlman RC, Bondietti EA, Eyman LD (1976) Biological pathways and chemical behavior of plutonium and other actinides in the environment. ACS Symp Ser 35: 47–80

    Article  CAS  Google Scholar 

  • Davis J A, Leckie JO (1978) Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Envir Sci Technol 12: 1309–1315

    Article  CAS  Google Scholar 

  • Dawson R, Duursma EK (1974) Distribution of radioisotopes between phytoplankton, sediment and sea water in a dialysis compartment system. Netherlands J Sea Res 8: 339–353

    Article  CAS  Google Scholar 

  • de Baar HJW (1983) The Marine Geochemistry of the Rare Earth Elements. Doctoral Dissertation, Woods Hole Oceanographic Institution/M.I.T

    Google Scholar 

  • De Jonghe WRA (1983) Selective determination and concentration levels of organic lead in the environment. Doctoral Dissertation, Universitaire Instelling Antwerpen

    Google Scholar 

  • de Mora SJ, Harrison RM (1983) The use of physical separation techniques in trace metal speciation studies. Water Res 17: 723–733

    Article  Google Scholar 

  • Emerson S, Cranston RE, Liss PS (1979) Redox species in a reducing fjord: equilibrium and kinetic considerations. Deep-Sea Res 26: 859–878

    Article  CAS  Google Scholar 

  • Emerson S, Kalhorn S, Jacobs L, Tebo BM, Nealson KH, Rosson RA (1982) Environmental oxidation rate of manganese(II): bacterial catalysis. Geochim Cosmochim Acta 46:1073–1079

    Google Scholar 

  • Feldman C, Batistoni DA (1977) Spectroscopic element detector for gas chromatography. Anal Chem 49: 2215 - 2221

    Article  CAS  Google Scholar 

  • Figura P, McDuffie B (1980) Determination of labilities of soluble trace metal species in aqueous environmental samples by anodic stripping voltammetry and Chelex column and batch methods. Anal Chem 52: 1433–1439

    Article  CAS  Google Scholar 

  • Fisher FH (1967) Ion pairing of magnesium sulfate in seawater: determined by ultrasonic absorption. Science 157: 823

    Article  PubMed  CAS  Google Scholar 

  • Fisher NS, Bjerregard P, Huynh-Ngoc L, Harvey GR (1983) Interactions of marine plankton with transuranic elements. II. Influence of dissolved organic compounds on americium and plutonium accumulation in a diatom. Mar Chem 13: 45–56

    Google Scholar 

  • Fisher NS, Fabris JG (1982) Complexation of Cu, Zn and Cd by metabolites excreted from marine diatoms. Mar Chem 11: 245–255

    Google Scholar 

  • Fitzgerald WF (1975) Mercury analysis in seawater using cold-trap preconcentration and gas phase detection. Adv Chem Ser 147: 99–109

    Article  CAS  Google Scholar 

  • Florence TM (1982) The speciation of trace elements in waters. Talanta 29: 345 - 364

    Article  PubMed  CAS  Google Scholar 

  • Florence TM, Batley GE (1980) Chemical speciation in natural waters. CRC Crit Rev 9: 219–296

    CAS  Google Scholar 

  • Froelich PN, Andreae MO (1981) The marine geochemistry of germanium: ekasilicon. Science 213: 205 - 207

    Article  PubMed  CAS  Google Scholar 

  • Froelich PN, Kaul LW, Byrd JT, Andreae MO, Roe KK (1984) Arsenic, barium, germanium tin, dimethylsulfide and nutrient biogeochemistry in Charlotte Harbor, Florida, a phosphorus-enriched estuary. Est Coast Shelf Sci, 20: 239–264

    Google Scholar 

  • Fujita M, Iwashima K (1981) Estimation of organic and total mercury in seawater around the Japanese archipelago. Envir Sci Technol 15: 929–933

    Article  CAS  Google Scholar 

  • Gillespie PA, Vaccaro RF (1978) A bacterial bioassay for measuring the copper chelation capacity of sea water. Limnol Oceanog 23: 543–548

    Article  CAS  Google Scholar 

  • Gohda S (1975) Valence states of arsenic and antimony in sea water. Bull Chem Soc Japan 48: 1213–1216

    Article  CAS  Google Scholar 

  • Gordon RM, Martin JH, Knauer GA (1982) Iron in north-east Pacific waters. Nature 299: 611–612

    Article  CAS  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (eds) (1983) Methods of seawater analysis, 2nd ed. Verlag Chemie, Weinheim

    Google Scholar 

  • Hallas LE, Means JC, Cooney J J (1982) Methylation of tin by estuarine microorganisms. Science 215: 1505 - 1507

    Article  PubMed  CAS  Google Scholar 

  • Hambrick GA, Froelich PN, Andreae MO, Lewis BL (1984) Determination of methylgermanium species in natural waters by graphite furnace atomic absorption spectrometry with hydride generation. Anal Chem 56: 421–424

    Article  CAS  Google Scholar 

  • Hanson AK Jr, Quinn JG (1983) The distribution of dissolved and organically complexed copper and nickel in the Middle Atlantic Bight. Can J Fish Aquat Sci, 40: 151–161

    Article  Google Scholar 

  • Hanson AK Jr, Sakamoto-Arnold CM, Huizenga DL, Kester DR (1986) The distribution and speciation of copper in a Gulf Stream warm core ring. Mar Chem, in press

    Google Scholar 

  • Harvey GR, Boran DA, Chesal LA, Tokar JM (1983) The structure of marine fulvic and humic acids. Mar Chem 12: 119–132

    Article  CAS  Google Scholar 

  • Hirose K, Dokiya Y, Sugimura Y (1982) Determination of conditional stability constants of organic copper and zinc complexes dissolved in seawater using ligand exchange method with EDTA. Mar Chem 11: 343–354

    Article  CAS  Google Scholar 

  • Hodge VF, Seidel SL, Goldberg ED (1979) Determination of tin(IV) and organotin compounds in natural waters, coastal sediments and macro algae by atomic absorption spectrometry. Anal Chem 51: 1256–1259

    Article  CAS  Google Scholar 

  • Huber F, Schmidt U, Kirchman H (1978) Aqueous chemistry of organolead and organothallium compounds in the presence of microorganisms. ACS Symp Ser 82: 65–81

    Article  CAS  Google Scholar 

  • Hunter KA, Liss PS (1979) The surface charge of suspended particles in estuarine and coastal waters. Nature 282: 823–825

    Article  CAS  Google Scholar 

  • Jacobs L, Emerson S (1982) Trace metal solubility in an anoxic fjord. Earth Planet Sci Lett 60: 237–252

    Article  CAS  Google Scholar 

  • Jewett KL, Brinckman FE (1983) The use of element-specific detectors coupled with high-performance liquid chromatographs. In: Vickrey TM (ed) Liquid chromatography detectors. Marcel Dekker, New York, pp 205–241

    Google Scholar 

  • Jewett KL, Brinckman FE, Bellama JM (1975) Chemical factors influencing metal alkylation in water. ACS Symp Ser 18: 304–318

    Article  CAS  Google Scholar 

  • Kantin R (1983) Chemical speciation of antimony in marine algae. Limnol Oceanog 28: 165–168

    Article  CAS  Google Scholar 

  • Kerndorff H, Schnitzer M (1980) Sorption of metals on humic acid. Geochim Cosmochim Acta 44: 1701–1708

    Article  CAS  Google Scholar 

  • Klinkhammer GP, Bender ML (1980) The distribution of manganese in the Pacific Ocean. Earth Planet Sci Lett 46: 361–384

    Article  CAS  Google Scholar 

  • Knauer GA, Martin JH (1972) Mercury in a marine pelagic food chain. Limnol Oceanog 17: 868–876

    Article  CAS  Google Scholar 

  • Kremling K, Wenck A, Osterroht C (1983) Variations of dissolved organic copper in marine waters. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 609–620

    Google Scholar 

  • Kritsotakis K, Rubischung P, Tobshall HJ (1979) Invers-voltammetrische Untersuchung zur Speziation des Quecksilbers in FluBwasser. Fresenius Z Anal Chem 296: 358–364

    Article  CAS  Google Scholar 

  • Landing WM, Bruland KW (1980) Manganese in the North Pacific. Earth Planet Sci Lett 49: 45–56

    Article  CAS  Google Scholar 

  • Landing WM, Bruland KW (1981) The vertical distribution of iron in the northeast Pacific. EOS 62: 906

    Google Scholar 

  • Lindberg SE, Andren AW, Harriss RC (1975) Geochemistry of mercury in the estuarine environment. In: Cronin L (ed) Estuarine research, vol 1. Wiley, New York, pp 64–107

    Google Scholar 

  • Lovelock JE, Maggs RJ, Wade RJ (1973) Halogenated hydrocarbons in and over the Atlantic. Nature 241: 194–196

    Article  CAS  Google Scholar 

  • Luten JB, Riekwel-Booy G, Greef J vd, ten Noever de Brauw MC (1983) Identification of arsenobetaine in sole, lemon sole, flounder, dab, crab and shrimps by field desorption and fast atom bombardment mass spectrometry. Chemosphere 12: 131–141

    Google Scholar 

  • Lyons WB, Gaudette HE, Armstrong PB (1979) Evidence for organically associated iron in nearshore pore fluids. Nature 282: 202–203

    Article  CAS  Google Scholar 

  • Macchi G, Pettine M (1980) Voltammetric characterization and chemical behavior of inorganic tin in natural waters. Envir Sci Technol 14: 815 - 818

    Article  CAS  Google Scholar 

  • Mackey DJ (1983) Metal-organic complexes in seawater: an investigation of naturally occurring complexes of Cu, Zn, Fe, Mg, Ni, Cr, Mn and Cs using high-performance liquid chromatography with atomic fluorescence detection. Mar Chem 13: 169–180

    Article  CAS  Google Scholar 

  • Manders WF, Olson GJ, Brinckman FE, Bellama JM (1984) A novel synthesis of methyl tin triiodide with environmental implications. J Chem Soc Chem Comm, 538–540

    Google Scholar 

  • Mantoura RFC (1981) Organo-metallic interactions in natural waters. In: Duursma EK, Dawson R (eds) Marine organic chemistry: evolution, composition, interactions and chemistry of organic matter in seawater. Elsevier, Amsterdam, pp 179–223

    Chapter  Google Scholar 

  • Mantoura RFC, Dickson A, Riley JP (1978) The complexation of metals with humic materials in natural waters. Est Coast Mar Sci 6: 387–408

    Article  CAS  Google Scholar 

  • Measures CI, Burton JD (1980) The vertical distribution and oxidation states of dissolved selenium in the northeast Atlantic Ocean and their relationship to biological processes. Earth Planet Sci Lett 46: 385 - 396

    Article  CAS  Google Scholar 

  • Measures CI, McDuff RE, Edmond JM (1980) Selenium redox chemistry at GEOSECS I re-occupation. Earth Planet Sci Lett 49: 102–108

    Article  CAS  Google Scholar 

  • Meinema HA, Burger-Wiersma T, Versluis-de Haan G, Gevers EC (1978) Determination of trace amounts of butyltin compounds in aqueous systems by gas chromatography/mass spectrometry. Envir Sci Technol 12: 288–293

    Article  CAS  Google Scholar 

  • Mills GL, Hanson AK Jr, Quinn JG, Lammela WR, Chasten ND (1982) Chemical studies of copper-organic complexes isolated from estuarine waters using C18 reverse-phase liquid chromatography. Mar Chem 11: 355–377

    Article  CAS  Google Scholar 

  • Moffett JW, Zika RG (1983) Oxidation kinetics of Cu(I) in seawater: implications for its existence in the marine environment. Mar Chem 13: 239–251

    Article  CAS  Google Scholar 

  • Morris AW (1974) Seasonal variation of dissolved metals in inshore waters of the Menai Straits. Mar Poll Bull 5: 54–59

    Article  CAS  Google Scholar 

  • Murray JW, Spell B, Paul P (1983) The contrasting geochemistry of manganese and chromium in the eastern tropical Pacific Ocean. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 643–669

    Google Scholar 

  • Musani L, Nürnberg HW, Valenta P, Konrad Z, Branica M (1981) Interaction of 65Zn and humic acid in seawater. Thalassia Jugoslavia 17: 71–81

    Google Scholar 

  • Musani L, Valenta P, Niirnberg HW, Konrad Z, Branica M (1980) On the chelation of toxic trace metals by humic acid of marine origin. Est Coast Mar Sci 11: 639–649

    Article  CAS  Google Scholar 

  • Nakayama E, Tokoro H, Kuwamoto T, Fujinaga T (1981) Dissolved state of chromium in seawater. Nature 290: 768–770

    Article  CAS  Google Scholar 

  • National Academy of Sciences (1978) An Assessment of Mercury in the Environment. Washington, DC: National Academy of Sciences

    Google Scholar 

  • Nelson DM, Lovett MB (1978) Oxidation state of plutonium in the Irish Sea. Nature 276: 599–601

    Article  CAS  Google Scholar 

  • Nriagu JO (ed) (1979) The biogeochemistry of mercury in the environment. Elsevier/North Holland Biomedical Press, New York

    Google Scholar 

  • Niirnberg HW, Valenta P (1983) Potentialities and applications of voltammetry in chemical speciation of trace metals in the sea. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 671–697

    Google Scholar 

  • Ortner PB, Kreader C, Jarvey GR (1983) Interactive effects of metals and humus on marine phytoplankton carbon uptake. Nature 301: 57–59

    Article  CAS  Google Scholar 

  • Palmer SE, Baker EW (1978) Copper porphyrins in deep-sea sediments: a possible indicator of oxidized terrestrial organic matter. Science 201: 49–51

    Article  PubMed  CAS  Google Scholar 

  • Piotrowicz SR, Harvey GR, Boran DA, Weisel CP, Springer-Young M (1984) Cadmium, copper and zinc interactions with marine humus as a function of ligand structure. Mar Chem 14: 333–346

    Article  CAS  Google Scholar 

  • Piotrowicz SR, Harvey GR, Springer-Young M, Courant RA, Boran DA (1983) Studies of cadmium, copper and zinc interactions with marine fulvic and humic materials in seawater using anodic stripping voltammetry. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 699–717

    Google Scholar 

  • Piotrowicz SR, Springer-Young M, Pulg JA, Spencer MJ (1982) Anodic stripping voltammetry for evaluation of organic-metal interactions in seawater. Anal Chem 54: 1367–1371

    Article  CAS  Google Scholar 

  • Plavsic M, Krznaric D, Branica M (1982) Determination of the apparent copper complexing capacity of sea-water by anodic stripping voltammetry. Mar Chem 11: 17–31

    Article  CAS  Google Scholar 

  • Ramamoorthy S, Kushner DJ (1975) Heavy metal binding sites in river water. Nature 256: 399–401

    Article  CAS  Google Scholar 

  • Reisinger K, Stoeppler M, Niirnberg HW (1981) Evidence for the absence of biological methylation of lead in the environment. Nature 291: 228–230

    Article  CAS  Google Scholar 

  • Roberts RA (1984) Speciation of Actinides in Marine Waters. PhD Dissertation, Florida State University

    Google Scholar 

  • Roekens EJ, Van Grieken RE (1983) Kinetics of iron(II) oxidation in seawater of various pH. Mar Chem 13: 195–202

    Article  CAS  Google Scholar 

  • Schnitzer M, Kahn SU (1972) Humic substances in the environment. Dekker, New York

    Google Scholar 

  • Seidel SL, Hodge VF, Goldberg ED (1980) Tin as an environmental pollutant. Thalassia Jugoslavia 16: 209–233

    CAS  Google Scholar 

  • Sipos L, Valenta P, Nurnberg HW, Branica M (1980) Voltammetric determination of the stability constants of the predominant labile lead complexes in sea water. In: Branica M, Konrad Z (eds) Lead in the marine environment. Pergamon Press, Oxford, pp 61–76

    Google Scholar 

  • Smith RG Jr (1976) Evaluation of combined applications of ultrafiltration and complexation capacity techniques to natural waters. Anal Chem 48: 74–76

    Article  CAS  Google Scholar 

  • Snyder LJ, Bentz JM (1982) Alkylation of lead(II) salts to tetraalkyllead in aqueous solution. Nature 296: 228–229

    Article  CAS  Google Scholar 

  • Stone AT (1983) The Reduction and Dissolution of Mn(III) and Mn(IV) Oxides by Organics. Report No AC-1–83, California Institute of Technology

    Google Scholar 

  • Stouff P, Boulegue J (1983) Control of copper speciation in sea water in the vicinity of hydrothermal vents. In: Proceedings of the International Conference on Heavy Metals in the Environment, vol 2. Heidelberg, September 1983

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd ed. Wiley, New York

    Google Scholar 

  • Su C, Goldberg ED (1976) Environmental concentrations and fluxes of some halocarbons. In: Windom HL, Duce RA (eds) Marine pollutant transfer. Lexington Books, Lexington MA: D.C. Heath and Co, pp 353–374

    Google Scholar 

  • Sugai SF, Healy ML (1978) Voltammetric studies of the organic association of copper and lead in two Canadian inlets. Mar Chem 6: 291–308

    Article  CAS  Google Scholar 

  • Sugimura Y, Suzuki Y, Miyake Y (1977) The content of selenium and its chemical form in seawater. J Oceanog Soc Japan 32: 235–241

    Article  Google Scholar 

  • Sunda WG, Ferguson RL (1983) Sensitivity of natural bacterial communities to additions of copper and to cupric ion activity: a bioassay of copper complexation in seawater. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED v(eds) Trace metals in sea water. Plenum Press, New York, pp 871–891

    Google Scholar 

  • Sunda WG, Huntsman SA, Harvey GR (1983) Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature 301: 234–236

    Article  CAS  Google Scholar 

  • Topping G, Davies IM (1981) Methylmercury production in the marine water column. Nature 290: 243–244

    Article  CAS  Google Scholar 

  • Turner DR (1984) Relationships between biological availability and chemical measurements. In: Sigel H (ed) Metal ions in biological systems. Marcel Dekker, New York

    Google Scholar 

  • Van den Berg CMG (1982 a) Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2.I. Theory. Mar Chem 11:307–322

    Google Scholar 

  • Van den Berg CMG (1982 b) Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2. II. Experimental procedures and application to surface seawater. Mar Chem 11:323–342

    Google Scholar 

  • Washburne CL (1981) Thermodynamics and Speciation of Lead in Seawater. MS Thesis, University of Delaware

    Google Scholar 

  • Waslenchuk DG (1977) The Geochemistry of Arsenic in the Continental Shelf Environment. PhD Dissertation, Georgia Institute of Technology

    Google Scholar 

  • Waslenchuk DG (1978) The budget and geochemistry of arsenic in a continental shelf environment. Mar Chem 7: 39–52

    Article  CAS  Google Scholar 

  • Wong GTF (1977) The distribution of iodine in the upper layers of the equatorial Atlantic. Deep-Sea Res 24: 115–125

    Article  CAS  Google Scholar 

  • Wong GTF, Brewer PG (1974) The determination and distribution of iodate in South Atlantic waters. J Mar Res 32: 25–36

    CAS  Google Scholar 

  • Wong GTF, Brewer PG (1977) The marine chemistry of iodine in anoxic basins. Geochim Cosmochim Acta 41: 151–159

    Article  CAS  Google Scholar 

  • Wong GTF, Chau YK, Luxon PL (1975) Methylation of lead in the environment. Nature 253: 263–264

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto J, Kaneda Y, Hikasa Y (1983) Picogram determination of methylmercury in seawater by gold amalgamation and atomic absorption spectrophotometry. Intl J Envir Anal Chem 16: 1–16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Bernhard F. E. Brinckman P. J. Sadler

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen

About this paper

Cite this paper

Andreae, M.O. (1986). Chemical Species in Seawater and Marine Particulates. In: Bernhard, M., Brinckman, F.E., Sadler, P.J. (eds) The Importance of Chemical “Speciation” in Environmental Processes. Dahlem Workshop Reports, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70441-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70441-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70443-7

  • Online ISBN: 978-3-642-70441-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics