Skip to main content

Transformation of Sulfur Species by Phototrophic and Chemotrophic Microbes

  • Conference paper
The Importance of Chemical “Speciation” in Environmental Processes

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 33))

Abstract

Transformations between the various oxidation states of sulfur occurring within the biosphere are dominantly microbially mediated. Species transformations may occur during the biosynthesis of cell biomass (e.g., the assimilatory reduction of sulfate) or its subsequent decomposition. Dissimilatory processes may be oxidative or reductive in character. The former commonly provide a source of electrons for energy-generating metabolism and/or a source of reducing power for autotrophic CO2 fixation. The latter employs oxidized S species as terminal electron acceptors for anaerobic respirations. In contrast to the diversity of microbes which selectively assimilate species, dissimilatory processes are mediated by distinct and specialized physiological groups having widely differing responses to parameters such as oxygen, light, and sulfide. These restrictions effectively partition certain sulfur species transformations into separate, though often adjacent, habitats. Some species transformations can only proceed at the interface between mutually exclusive habitats. Under anoxic conditions dissimilatory sulfur species transformations are exclusively microbial.

Recent investigations have been marked by an increasing awareness of the quantitative importance of certain organic S species in aquatic sediments and the wide variation of spatial and temporal scales across oxicanoxic interfaces. The ability of microbially mediated oxidations to compete with abiotic reactions under oxic conditions appears to be variable and habitat-dependent. Under anoxic conditions iron may act as a significant, though possibly transitory, sink for sulfide produced during dissimilatory sulfate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almgren T, Hagström I (1974) The oxidation rate of sulfide in seawater. Water Res 8: 395–400

    Article  CAS  Google Scholar 

  • Anderson JW (1978) Sulphur in biology. Edward Arnold, London

    Google Scholar 

  • Andreae MO (1980) The production of methylated sulfur compounds by marine phytoplankton. In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Australian Academy of Science, Canberra, pp 253–259

    Google Scholar 

  • Bechard MJ, Rayburn WR (1979) Volatile organic sulfides from freshwater algae. J Phycol 15: 379–383

    CAS  Google Scholar 

  • Berner RA (1971) Principles of chemical sedimentology. McGraw-Hill, New York

    Google Scholar 

  • Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur- and sulfate-reducing bacteria. Arch Microbiol 117: 9–16

    Article  CAS  Google Scholar 

  • Boulege J, Michard G (1973) Formation de polysulfures dans les conditions physicochimiques de l’eau de mer. CR Acad Sci (Paris) 277: 2613–2616

    Google Scholar 

  • Bremner JM, Steele CG (1978) Role of microorganisms in the atmospheric sulfur cycle. In: Alexander M (ed) Advances in microbial ecology. Plenum Press, New York, pp 155–201

    Google Scholar 

  • Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302: 58–61

    Article  CAS  Google Scholar 

  • Chambers LA (1982) Sulfur isotope study of a modern intertidal environment and interpretation of ancient sulfides. Geochim Cosmochim Acta 46: 721–728

    Article  CAS  Google Scholar 

  • Ehrlich HL (1981) Geomicrobiology. Marcel Dekker, New York

    Google Scholar 

  • Fitzgerald JW (1976) Sulfate ester formation and hydrolysis: a potentially important yet often ignored aspect of the sulfur cycle of aerobic soils. Bacteriol Rev 40: 698–721

    PubMed  CAS  Google Scholar 

  • Fitzgerald JW (1978) Naturally occurring organosulfur compounds in soil. In: Nriagu JO (ed) Sulfur in the environment. II. Ecological impacts. John Wiley, New York, pp 391–43

    Google Scholar 

  • Freney JR, Melville GE, Williams CH (1971) Organic sulphur fractions labelled by addition of 35S-sulphate to soil. Soil Biol Biochem 3: 133–141

    Article  CAS  Google Scholar 

  • Hageage GJ, Eanes ED, Gherna RL (1970) X-ray diffraction studies of the sulfur globules accumulated by Chromatium species. J Bacteriol 101: 464–469

    PubMed  CAS  Google Scholar 

  • Hansen TA (1983) Electron donor metabolism in phototrophic bacteria. In: Ormerod JG (ed) The phototrophic bacteria: anaerobic life in the light. Black well Scientific Publications, Oxford, pp 76–99

    Google Scholar 

  • Hashwa F (1975) Thiosulfate metabolism in some red phototrophic bacteria. PI Soil 43: 41–47

    Article  CAS  Google Scholar 

  • Howarth RW (1979) Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203: 49–51

    Article  PubMed  CAS  Google Scholar 

  • Howarth RW, Jorgensen BB (1984) Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35S02–-reduction measurements. Geochim Cosmochim. Acta 48: 1807–1818

    Google Scholar 

  • Howarth RW, Merkel S (1984) Pyrite formation and the measurement of sulfate reduction in salt marsh sediments. Limnol Oceanog 29: 598–608

    Article  CAS  Google Scholar 

  • Hurlbert RE (1967) Effect of oxygen on viability and substrate utilization in Chromatium. J Bacteriol 93: 1346–1352

    PubMed  CAS  Google Scholar 

  • Jannasch HW, Nelson DC (1984) Recent progress in the microbiology of hydro thermal vents. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 170–176

    Google Scholar 

  • Jannasch HW, Wirsen CO (1979) Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 29: 592–598

    Article  CAS  Google Scholar 

  • Jørgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanog 22: 814–832

    Article  Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Phil Trans Roy Soc Lond B 298: 543–561

    Article  Google Scholar 

  • Jørgensen BB (1983) The microbial sulfur cycle. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 91–124

    Google Scholar 

  • Kämpf C, Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125–137

    Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil Trans Roy Soc Lond B 298: 499–528

    Article  CAS  Google Scholar 

  • Kelly DP, Kuenen JG (1985) Ecology of the colourless sulfur bacteria. In: Codd GA (ed) Aspects of microbial metabolism and ecology. Academic Press, San Diego, pp 211–240

    Google Scholar 

  • King GM (1983) Sulfate reduction in Georgia salt marsh soils: an evaluation of pyrite formation by use of 35S and 55Fe tracers. Limnol Oceanog 28: 987–995

    Article  CAS  Google Scholar 

  • King GM, Klug MJ (1980) Sulfhydrolase activity in sediments of Wintergreen Lake, Kalamazoo County, Michigan. Appl Envir Microbiol 39: 950–956

    Google Scholar 

  • King GM, Klug MJ (1982) Comparative aspects of sulfur mineralization in sediments of a eutrophic lake basin. Appl Envir Microbiol 43: 1406–1412

    CAS  Google Scholar 

  • Kuenen JG, Beudeker RF (1982) Microbiology of thiobacilli and other sulphur-oxidizing autotrophs, mixotrophs, and heterotrophs. Phil Trans Roy Soc Lond B 298: 473–497

    Article  CAS  Google Scholar 

  • McCandless EL, Craigie JS (1979) Sulfated polysaccharides in red and brown algae. Ann Rev Plant Physiol 30: 41–53

    Article  CAS  Google Scholar 

  • Nriagu JO, Coker RD, Kemp ALW (1979) Thiosulfate, polythionates, and rhodanese activity in Lake Erie and Ontario sediments. Limnol Oceanog 24: 383–389

    Article  CAS  Google Scholar 

  • Nriagu JO, Hem JD (1978) Chemistry of pollutant sulfur in natural waters. In: Nriagu JO (ed) Sulfur in the environment. II. Ecological impacts. John Wiley, New York, pp 211–270

    Google Scholar 

  • Oshrain RL, Wiebe WJ (1979) Arylsulfatase activity in salt marsh soils. Appl Envir Microbiol 38: 337–340

    CAS  Google Scholar 

  • Padan E (1979) Impact of facultatively anaerobic photoautotrophic metabolism on ecology of cyanobacteria (blue-green algae). Adv Microb Ecol 3: 1–48

    CAS  Google Scholar 

  • Peck HD, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. Phil Trans Roy Soc Lond B 298: 443–466

    Article  CAS  Google Scholar 

  • Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic Press, London

    Google Scholar 

  • Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 3–18

    Google Scholar 

  • Pfennig N, Biebl H (1976) De sulfur omonas acetoxidans gen. nov. and sp. nov., a new anaerobic,sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110: 3–12

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N, Widdel F (1981) Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer-Verlag, Heidelberg, pp 169–177

    Chapter  Google Scholar 

  • Pfennig N, Widdel F (1982) The bacteria of the sulphur cycle. Phil Trans Roy Soc Lond B 298:433–41

    Google Scholar 

  • Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer-Verlag, New York, pp 926–940

    Google Scholar 

  • Postgate JR (1968) The sulfur cycle. In: Nickless G (ed) Inorganic sulfur chemistry. Elsevier, Amsterdam, pp 259–279

    Google Scholar 

  • Postgate JR (1982) Economic importance of sulphur bacteria. Phil Trans Roy Soc Lond B 298: 583–600

    Article  Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Rolls JP, Lindstrom ES (1967) Effect of thiosulfate on the photosynthetic growth of Rhodopseudomonas palustris. J Bacteriol 94: 860–866

    PubMed  CAS  Google Scholar 

  • Roy AB, Trudinger PA (1970) The biochemistry of inorganic compounds of sulfur. Cambridge University Press, London

    Google Scholar 

  • Ruby EG, Wirsen CO, Jannasch HW (1981) Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl Envir Microbiol 42: 317–324

    CAS  Google Scholar 

  • Schlegel HG (1981) Microorganisms involved in the nitrogen and sulfur cycles. In Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer-Verlag, Berlin, pp 3–12

    Chapter  Google Scholar 

  • Siegel LM (1975) Biochemistry of the sulfur cycle. In: Greenberg DM (ed) Metabolic pathways. Metabolism of sulfur compounds. Academic Press, New York, pp 217–286

    Google Scholar 

  • Skyring GW, Chambers LA, Bauld J (1983) Sulfate reduction in sediments colonized by cyanobacteria, Spencer Gulf, South Australia. Aust J Mar Freshw Res 34: 359–374

    Google Scholar 

  • Steinitz YL (1981) Microbial desulfonation of lignosulfonate - a new approach. Eur J Appl Microbiol Biotechnol 13: 216–221

    Article  CAS  Google Scholar 

  • Swank WT, Fitzgerald JW, Ash JT (1984) Microbial transformation of sulfate in forest soils. Science 223: 182–184

    Article  PubMed  CAS  Google Scholar 

  • Trudinger PA (1982) Geological significance of sulphur oxidoreduction by bacteria. Phil Trans Roy Soc Lond B 298: 563–581

    Article  CAS  Google Scholar 

  • Trudinger PA, Loughlin RE (1981) Metabolism of simple sulfur compounds. In: Florkin M, Neuberger A, van Deemem LLM (eds) Comprehensive biochemistry. 19A. Amino acid metabolism and sulfur metabolism. Elsevier, Amsterdam, pp 165–256

    Google Scholar 

  • Trüper HG (1978) Sulfur metabolism. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 677–690

    Google Scholar 

  • Trüper HG (1981) Photolithotrophic sulfur oxidation. In: Bothe H, Trebst A (eds) Biology in inorganic nitrogen and sulfur. Springer-Verlag, Berlin, pp 199–211

    Google Scholar 

  • Trüper HG (1982) Microbial processes in the sulfur cycle through time. In: Holland HD, Schidlowski M (eds) Mineral deposits and the evolution of the biosphere. Dahlem Konferenzen. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Trüper HG, Fischer U (1982) Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Phil Trans Roy Soc Lond B 298: 529–542

    Article  Google Scholar 

  • Tuttle JH, Wirsen CO, Jannasch HW (1983) Microbial activities in the emitted hydrothermal waters of the Galapagos Rift vents. Mar Biol 73: 293–299

    Article  Google Scholar 

  • van Gemerden H, Beeftink HH (1983) Ecology of phototrophic bacteria: In: Ormerod JG (ed) The phototrophic bacteria: anaerobic life in the light. Blackwell Scientific Publications, Oxford, pp 146–185

    Google Scholar 

  • Wetzel RG (1983) Limnology. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Wood JM, Wang HK (1983) Microbial resistance to heavy metals. Envir Sci Technol 17: 582A–590A

    Article  CAS  Google Scholar 

  • Zinder SH, Brock TD (1978a) Dimethyl sulfoxide as an electron acceptor for an aerobic growth. Arch Microbiol 116:35–40

    Google Scholar 

  • Zinder SH, Brock TD (1978b) Methane, carbon dioxide and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Appl Envir Microbiol 35:344–352

    Google Scholar 

  • Zinder SH, Brock TD (1978c) Production of methane and carbon dioxide from metane thiol and dimethyl sulfide by anaerobic lake sediments. Nature 273:226–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Bernhard F. E. Brinckman P. J. Sadler

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen

About this paper

Cite this paper

Bauld, J. (1986). Transformation of Sulfur Species by Phototrophic and Chemotrophic Microbes. In: Bernhard, M., Brinckman, F.E., Sadler, P.J. (eds) The Importance of Chemical “Speciation” in Environmental Processes. Dahlem Workshop Reports, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70441-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70441-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70443-7

  • Online ISBN: 978-3-642-70441-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics