Skip to main content

Mechanoreception in Ciliates

  • Chapter

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 5))

Abstract

Living cells share the ability to react to environmental stimuli, such as touch, light, chemicals or temperature. During stimulus reception, external energy is translated and amplified into electrical signals by means of physicochemical processes.

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 114, TP A5

Dedicated to Professor B. Rensch on the occasion of his 85th birthday

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akoev GN (1982) The effect of Mg and Ca on the excitability of Pacinian corpuscles. Brain Res 239: 39–49

    Article  Google Scholar 

  • Brehm P, Eckert R (1978 a) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202: 1203–1206

    Google Scholar 

  • Brehm P, Eckert R (1978 b) An electrophysiological study of the regulation of beat frequency in Paramecium. J Physiol 283: 557–568

    Google Scholar 

  • Budelmann BU (1979) Hair cell polarization in the gravity receptor systems of the statocysts of the cephalopods Sepia officinalis and Loligo vulgaris. Brain Res 160: 261–270

    Article  PubMed  CAS  Google Scholar 

  • Byrne BJ, Byrne BC (1978) Behaviour and the excitable membrane in Paramecium. CRC Crit Rev Microbiol 6: 53–108

    Article  PubMed  CAS  Google Scholar 

  • Chad JE, Deitmer JW, Eckert R (1984) Spatio-temporal characteristics of Ca2+ dispersal following its injection into Aplysia neurons. Biophys J 45: 181a

    Google Scholar 

  • Corey DP, Hudspeth A J (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281: 675–677

    Article  PubMed  CAS  Google Scholar 

  • Deitmer JW (1981) Voltage and time characteristics of the potassium mechanoreceptor current in the ciliate Stylonychia. J Comp Physiol 141: 173–182

    Article  CAS  Google Scholar 

  • Deitmer JW (1982) The effects of tetraethylammonium and other agents on the potassium mechanoreceptor current in the ciliate Stylonychia. J Exp Biol 96:239–249

    Google Scholar 

  • Deitmer JW (1983) Ca channels in the membrane of the hypotrich ciliate Stylonychia. In: Grinnell A, Moody WJ (eds) The physiology of excitable cells. Liss, New York, pp 51–63

    Google Scholar 

  • Deitmer JW (1984) Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia. J Physiol 355: 137–159

    PubMed  CAS  Google Scholar 

  • De Peyer JE, Deitmer JW (1980) Divalent cations as charge carriers during two functionally different membrane currents in the ciliate Stylonychia. J Exp Biol 88:73–89

    Google Scholar 

  • De Peyer JE, Machemer H (1977) Membrane excitability in Stylonychia: Properties of the two-peak regenerative Ca-response. J Comp Physiol 121:15 –32

    Google Scholar 

  • De Peyer JE, Machemer H (1978 a) Hyperpolarizing and depolarizing mechanoreceptor potentials in Stylonychia. J Comp Physiol 127: 255–266

    Google Scholar 

  • De Peyer JE, Machemer H (1978b) Are receptor-activated ciliary motor responses mediated through voltage or current? Nature 276:285–287

    Google Scholar 

  • Doroszewski M (1970) Responses of the ciliate Dileptus to mechanical stimuli. Acta Protozoons 7: 353–362

    Google Scholar 

  • Doughty MJ, Dryl S (1981) Control of ciliary activity in Paramecium: An analysis of chemosensory transduction in a eukaryotic unicellular organism. Prog Neurobiol 61: 1–115

    Google Scholar 

  • Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 271: 119–133

    PubMed  CAS  Google Scholar 

  • Eckert R (1972) Bioelectric control of ciliary activity. Science 176: 473–481

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Brehm P (1979) Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng 8: 353–383

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Chad JE (1984) Inactivation of Ca channels. Prog Biophys Mol Biol 44:215–267

    Google Scholar 

  • Eckert R, Naitoh Y (1970) Passive electrical properties of Paramecium and problems of ciliary coordination. J Gen Physiol 55: 467–483

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Naitoh Y, Friedman K (1972) Sensory mechanisms in Paramecium. I. Two components of the electric response to mechanical stimulation of the anterior surface. J Exp Biol 56: 683–694

    Google Scholar 

  • Eckert R, Naitoh Y, Machemer H (1976) Calcium in the bioelectric and motor functions of Paramecium. Proc Soc Exp Biol 30:233–255

    Google Scholar 

  • Edwards C, Ottoson D, Rydqvist B, Swerup C (1981) The permeability of the transducer membrane of the crayfish stretch receptor to calcium and to other divalent cations. Neuroscience 6: 1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich BE, Finkelstein A, Fuorte M, Kung C (1984) Voltage-dependent calcium channels from Paramecium cilia incorporated into planar lipid bilayers. Science 225: 427–428

    Article  PubMed  CAS  Google Scholar 

  • Flock A (1971) Sensory transduction in hair cells. In: Loewenstein WR (ed) Principles of receptor physiology. Springer, Berlin Heidelberg New York, pp 396–441 (Handbook of sensory physiology, vol I )

    Google Scholar 

  • Gage PW (1976) Generation of end-plate potentials. Physiol Rev 56: 177–247

    PubMed  CAS  Google Scholar 

  • Gustin MC, Bonini MN, Nelson DL (1983) Membrane potential regulation of cAMP: control mechanism for the swimming behaviour in Paramecium. Soc Neurosci Abstr 9: 167

    Google Scholar 

  • Hara R, Naitoh Y (1980) Electrophysiological responses of Didinium nasutum to mechanical and electrical stimulations. Zool Mag Tokyo 89: 450

    Google Scholar 

  • Hennessey TM, Machemer H, Nelson DL (1985) Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization. Eur J Cell Biol 36: 153–156

    PubMed  CAS  Google Scholar 

  • Hille B (1978) Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys J 22:283–294

    Google Scholar 

  • Hudspeth A J, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells. Proc Natl Acad Sci USA 76: 1506–1509

    Article  PubMed  CAS  Google Scholar 

  • Hunt CC (1974) The physiology of muscle receptors. In: Hunt CC (ed) Muscle receptors. Springer, Berlin Heidelberg New York, pp 191–234 (Handbook of sensory physiology, vol III/2)

    Google Scholar 

  • Jennings HS (1906) Behavior of the lower organisms. Columbia University Press, New York, pp 1–366

    Book  Google Scholar 

  • Kafka G (1914) In: Barth JA (ed) Einführung in die Tierpsychologie auf experimenteller und ethologischer Grundlage, vol I. Leipzig, pp 1–593

    Google Scholar 

  • Kung C (1979) Biology and genetic of Paramecium behavior. In: Breakfield XO (ed) Topics in neurogenetics. Elsevier, New York, pp 1–26

    Google Scholar 

  • Kung C, Saimi Y (1982) The physiological basis of taxes in Paramecium. Annu Rev Physiol 44: 519–534

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein WR (1960) Biological transducers. Sci Am 203: 98–108

    Article  PubMed  CAS  Google Scholar 

  • Machemer H (1974) Frequency and directional responses of cilia to membrane potential changes in Paramecium. J Comp Physiol 92:293–316

    Google Scholar 

  • Machemer H (1976) Interactions of membrane potential and cations in regulation of ciliary activity. J Exp Biol 65: 427–448

    PubMed  CAS  Google Scholar 

  • Machemer H (1977) Motor activity and bioelectric control of cilia. Fortschr Zool 24: 195–210

    PubMed  CAS  Google Scholar 

  • Machemer H (1985a) Mechanoresponses in Protozoa. In: Song PS, Colombetti G, Lenci F (eds) Sensory perception and transduction in aneural organisms. Plenum, New York, 179–210

    Chapter  Google Scholar 

  • Machemer H (1985b) Was bewegt einen Einzeller? Festschrift B. Rensch. Schriftenreihe

    Google Scholar 

  • der Westf. Wilhelms-Universität Münster 12

    Google Scholar 

  • Machemer H, De Peyer JE (1977) Swimming sensory cells: Electrical membrane parameters, receptor properties and motor control in ciliated protozoa. Verh Dtsch Zool Ges Erlangen 1977: 86–110

    Google Scholar 

  • Machemer H, De Peyer JE (1982) Analysis of ciliary beating frequency under voltage clamp control of the membrane. Cell Motil [Suppl] 1: 205–210

    Article  Google Scholar 

  • Machemer H, Machemer-Röhnisch S (1984) Mechanical and electrical correlates of mechano-receptor activation of the ciliated tail in Paramecium. J Comp Physiol A 154: 273–278

    Article  Google Scholar 

  • Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol 296:49–60

    Google Scholar 

  • Machemer-Röhnisch S, Machemer H (1984) Receptor current following controlled stimulation of immobile tail cilia in Paramecium caudatum. J Comp Physiol A 154:263–271

    Google Scholar 

  • Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng 7: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Methfessel C (1983) Statistische Analyse von Einzelkanal-Fluktuationen am Beispiel des Calcium-abhängigen Kalium-Kanals von kultivierten embryonalen Skelettmuskelzellen der Ratte. Dissertation, Ruhr-Universität, Bochum

    Google Scholar 

  • Methfessel C, Boheim G (1982) The gating of single calcium-dependent potassium channels by an activation/blockade mechanism. Biophys Struct Mech 9: 35–60

    Article  PubMed  CAS  Google Scholar 

  • Naitoh Y (1984) Mechanosensory transduction in protozoa. In: Colombetti G, Lenci F (eds) Membranes and sensory transduction. Plenum, New York, pp 113–135

    Google Scholar 

  • Naitoh Y, Eckert R (1969 a) Ionic mechanisms controlling behavioral responses in Paramecium to mechanical stimulation. Science 164: 963–965

    Google Scholar 

  • Naitoh Y, Eckert R (1969b) Ciliary orientation: controlled by cell membrane or by intracellular fibrils? Science 166: 1633–1635

    Article  PubMed  CAS  Google Scholar 

  • Naitoh Y, Eckert R (1973) Sensory mechanisms in Paramecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential. J Exp Biol 54:53–65

    Google Scholar 

  • Naitoh Y, Kaneko M (1972) Reactivated Triton-extracted models of Paramecium: modification of ciliary movement by calcium ions. Science 176: 523–524

    Article  CAS  Google Scholar 

  • Naitoh Y, Eckert R, Friedman K (1972) A regenerative calcium response in Paramecium. J Exp Biol 56: 667–681

    PubMed  CAS  Google Scholar 

  • Ogura A, Machemer H (1980) Distribution of mechanoreceptor channels in the Paramecium surface membrane. J Comp Physiol 135: 233–242

    Article  CAS  Google Scholar 

  • Ogura A, Takahashi M (1976) Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature 264: 170–172

    Article  PubMed  CAS  Google Scholar 

  • Onimaru H, Naitoh Y, Ohki K, Nozawa Y (1979) Electrophysiological studies on the membrane of Tetrahymena. Dobutsugaku Zasshi (Zool Mag Tokyo) 88: 529

    Google Scholar 

  • Sakmann B, Neher E (1983) (eds) Single channel recording. Plenum, New York, pp 1–503

    Google Scholar 

  • Satow Y, Murphy AD, Kung C (1983) The ionic basis of the depolarizing mechanoreceptor potential of Paramecium tetraurelia. J Exp Biol 103: 253–264

    CAS  Google Scholar 

  • Schmidt-Nielsen K (1975) Animal physiology: adaptation and environment. Cambridge University Press, Cambridge, pp 1–560

    Google Scholar 

  • Schultz JE, Grünemund R, von Hirschhausen R, Schönefeld U (1984) Ionic regulation of cyclic AMP levels in Paramecium tetraurelia. FEBS Lett 167: 113–116

    Article  PubMed  CAS  Google Scholar 

  • Stommel EW, Stephens RE, Alkon DL (1980) Motile statocyst cilia transmit rather than directly transduce mechanical stimuli. J Cell Biol 87: 652–662

    Article  PubMed  CAS  Google Scholar 

  • Swerup C, Rydqvist B, Ottoson D (1983) Time characteristics and potential dependence of early and late adaptation in the crustacean stretch receptor. Acta Physiol Scand 119: 91–99

    Article  PubMed  CAS  Google Scholar 

  • Terzuolo CA, Knox CK (1971) Static and dynamic behaviour of the stretch receptor organ of crustacea. In: Loewenstein WR (ed) Principles of receptor physiology. Springer, Berlin Heidelberg New York, pp 500–522 (Handbook of sensory physiology, vol I )

    Google Scholar 

  • Thurm U (1982) Grundzüge der Transduktionsmechanismen in Sinneszellen. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik - Ein Lehrbuch. Springer, Berlin Heidelberg New York, pp 681–691

    Google Scholar 

  • Tillotson D, Gorman ALF (1980) Nonuniform Ca2+ buffer distribution in a nerve cell body. Nature 286: 816–817

    Article  PubMed  CAS  Google Scholar 

  • Van Houten J, Hauser DCR, Levandowsky M (1981) Chemosensory behavior in Protozoa. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of Protozoa, vol 4. Academic, New York, pp 67–124

    Google Scholar 

  • Wiederhold ML (1976) Mechanosensory transduction in “sensory” and “motile” cilia. Annu Rev Biophys Bioeng 5: 39–62

    Article  PubMed  CAS  Google Scholar 

  • Wood DC (1975) Protozoa as models of stimulus transduction. In: Eisenstein EM (ed) Aneural organisms in neurobiology. Plenum, New York, pp 5–23 (Advances in behavioral biology, vol 13 )

    Google Scholar 

  • Zucker RS, Stockbridge N (1983) Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse. J Neurosci 3: 1263–1269

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Machemer, H., Deitmer, J.W. (1985). Mechanoreception in Ciliates. In: Autrum, H., Ottoson, D., Perl, E.R., Schmidt, R.F., Shimazu, H., Willis, W.D. (eds) Progress in Sensory Physiology. Progress in Sensory Physiology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70408-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70408-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70410-9

  • Online ISBN: 978-3-642-70408-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics